BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36968291)

  • 1. Assessing the added value of apparent diffusion coefficient, cerebral blood volume, and radiomic magnetic resonance features for differentiation of pseudoprogression versus true tumor progression in patients with glioblastoma.
    Leone R; Meredig H; Foltyn-Dumitru M; Sahm F; Hamelmann S; Kurz F; Kessler T; Bonekamp D; Schlemmer HP; Bo Hansen M; Wick W; Bendszus M; Vollmuth P; Brugnara G
    Neurooncol Adv; 2023; 5(1):vdad016. PubMed ID: 36968291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation.
    Yoon RG; Kim HS; Paik W; Shim WH; Kim SJ; Kim JH
    Eur Radiol; 2017 Jan; 27(1):255-266. PubMed ID: 27048531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.
    Song YS; Choi SH; Park CK; Yi KS; Lee WJ; Yun TJ; Kim TM; Lee SH; Kim JH; Sohn CH; Park SH; Kim IH; Jahng GH; Chang KH
    Korean J Radiol; 2013; 14(4):662-72. PubMed ID: 23901325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis.
    Han Y; Yan LF; Wang XB; Sun YZ; Zhang X; Liu ZC; Nan HY; Hu YC; Yang Y; Zhang J; Yu Y; Sun Q; Tian Q; Hu B; Xiao G; Wang W; Cui GB
    BMC Cancer; 2018 Feb; 18(1):215. PubMed ID: 29467012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging.
    Chu HH; Choi SH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yoon TJ; Kim TM; Lee SH; Park CK; Kim JH; Sohn CH; Park SH; Kim IH
    Radiology; 2013 Dec; 269(3):831-40. PubMed ID: 23771912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial.
    Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB
    BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy.
    Li H; Li J; Cheng G; Zhang J; Li X
    Clin Neurol Neurosurg; 2016 Dec; 151():31-36. PubMed ID: 27764705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging.
    Ahn SS; Shin NY; Chang JH; Kim SH; Kim EH; Kim DW; Lee SK
    J Neurosurg; 2014 Aug; 121(2):367-73. PubMed ID: 24949678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting MGMT Promoter Methylation of Glioblastoma from Dynamic Susceptibility Contrast Perfusion: A Radiomic Approach.
    Crisi G; Filice S
    J Neuroimaging; 2020 Jul; 30(4):458-462. PubMed ID: 32374045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma.
    Manning P; Daghighi S; Rajaratnam MK; Parthiban S; Bahrami N; Dale AM; Bolar D; Piccioni DE; McDonald CR; Farid N
    J Neurooncol; 2020 May; 147(3):681-690. PubMed ID: 32239431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients.
    Brandes AA; Franceschi E; Tosoni A; Blatt V; Pession A; Tallini G; Bertorelle R; Bartolini S; Calbucci F; Andreoli A; Frezza G; Leonardi M; Spagnolli F; Ermani M
    J Clin Oncol; 2008 May; 26(13):2192-7. PubMed ID: 18445844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early volumetric, perfusion, and diffusion MRI changes after mutant isocitrate dehydrogenase (IDH) inhibitor treatment in IDH1-mutant gliomas.
    Cho NS; Hagiwara A; Eldred BSC; Raymond C; Wang C; Sanvito F; Lai A; Nghiemphu P; Salamon N; Steelman L; Hassan I; Cloughesy TF; Ellingson BM
    Neurooncol Adv; 2022; 4(1):vdac124. PubMed ID: 36033919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients.
    Baine M; Burr J; Du Q; Zhang C; Liang X; Krajewski L; Zima L; Rux G; Zhang C; Zheng D
    J Imaging; 2021 Jan; 7(2):. PubMed ID: 34460616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status.
    Romano A; Calabria LF; Tavanti F; Minniti G; Rossi-Espagnet MC; Coppola V; Pugliese S; Guida D; Francione G; Colonnese C; Fantozzi LM; Bozzao A
    Eur Radiol; 2013 Feb; 23(2):513-20. PubMed ID: 22875158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.
    Wang S; Martinez-Lage M; Sakai Y; Chawla S; Kim SG; Alonso-Basanta M; Lustig RA; Brem S; Mohan S; Wolf RL; Desai A; Poptani H
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):28-36. PubMed ID: 26450533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.