These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 36968390)

  • 1. The regulation of plant cell wall organisation under salt stress.
    Dabravolski SA; Isayenkov SV
    Front Plant Sci; 2023; 14():1118313. PubMed ID: 36968390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintenance of Cell Wall Integrity under High Salinity.
    Liu J; Zhang W; Long S; Zhao C
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root cell wall solutions for crop plants in saline soils.
    Byrt CS; Munns R; Burton RA; Gilliham M; Wege S
    Plant Sci; 2018 Apr; 269():47-55. PubMed ID: 29606216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming.
    Ezquer I; Salameh I; Colombo L; Kalaitzis P
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?
    Ogden M; Hoefgen R; Roessner U; Persson S; Khan GA
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize.
    Oliveira DM; Mota TR; Salatta FV; Sinzker RC; Končitíková R; Kopečný D; Simister R; Silva M; Goeminne G; Morreel K; Rencoret J; Gutiérrez A; Tryfona T; Marchiosi R; Dupree P; Del Río JC; Boerjan W; McQueen-Mason SJ; Gomez LD; Ferrarese-Filho O; Dos Santos WD
    Plant Cell Environ; 2020 Sep; 43(9):2172-2191. PubMed ID: 32441772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Wall Components and Extensibility Regulate Root Growth in
    Liu J; Shao Y; Feng X; Otie V; Matsuura A; Irshad M; Zheng Y; An P
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsUGE3-mediated cell wall polysaccharides accumulation improves biomass production, mechanical strength, and salt tolerance.
    Tang Y; Wang M; Cao L; Dang Z; Ruan N; Wang Y; Huang Y; Wu J; Zhang M; Xu Z; Chen W; Li F; Xu Q
    Plant Cell Environ; 2022 Aug; 45(8):2492-2507. PubMed ID: 35592911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance.
    Shafi A; Gill T; Zahoor I; Ahuja PS; Sreenivasulu Y; Kumar S; Singh AK
    Mol Biol Rep; 2019 Apr; 46(2):1985-2002. PubMed ID: 30706357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing.
    Gigli-Bisceglia N; van Zelm E; Huo W; Lamers J; Testerink C
    Development; 2022 Jun; 149(12):. PubMed ID: 35574987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress.
    Shafi A; Chauhan R; Gill T; Swarnkar MK; Sreenivasulu Y; Kumar S; Kumar N; Shankar R; Ahuja PS; Singh AK
    Plant Mol Biol; 2015 Apr; 87(6):615-31. PubMed ID: 25754733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guard Cell Transcriptome Reveals Membrane Transport, Stomatal Development and Cell Wall Modifications as Key Traits Involved in Salinity Tolerance in Halophytic Chenopodium quinoa.
    Rasouli F; Kiani-Pouya A; Movahedi A; Wang Y; Li L; Yu M; Pourkheirandish M; Zhou M; Chen Z; Zhang H; Shabala S
    Plant Cell Physiol; 2023 Mar; 64(2):204-220. PubMed ID: 36355785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of a cell wall damage induced transcription factor, OsWRKY42, leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection.
    Pillai SE; Kumar C; Patel HK; Sonti RV
    BMC Plant Biol; 2018 Sep; 18(1):177. PubMed ID: 30176792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance.
    Zhao H; Li Z; Wang Y; Wang J; Xiao M; Liu H; Quan R; Zhang H; Huang R; Zhu L; Zhang Z
    Plant Biotechnol J; 2022 Mar; 20(3):468-484. PubMed ID: 34664356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.
    Van der Does D; Boutrot F; Engelsdorf T; Rhodes J; McKenna JF; Vernhettes S; Koevoets I; Tintor N; Veerabagu M; Miedes E; Segonzac C; Roux M; Breda AS; Hardtke CS; Molina A; Rep M; Testerink C; Mouille G; Höfte H; Hamann T; Zipfel C
    PLoS Genet; 2017 Jun; 13(6):e1006832. PubMed ID: 28604776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
    Zhong R; Ye ZH
    Plant Cell Physiol; 2015 Feb; 56(2):195-214. PubMed ID: 25294860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the composition and structure of cell wall polysaccharides from Artemisia annua in response to salt stress.
    Corrêa-Ferreira ML; Viudes EB; de Magalhães PM; Paixão de Santana Filho A; Sassaki GL; Pacheco AC; de Oliveira Petkowicz CL
    Carbohydr Res; 2019 Sep; 483():107753. PubMed ID: 31362136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages.
    Lastochkina O; Aliniaeifard S; Garshina D; Garipova S; Pusenkova L; Allagulova C; Fedorova K; Baymiev A; Koryakov I; Sobhani M
    J Plant Physiol; 2021 Aug; 263():153462. PubMed ID: 34225178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome analysis reveals the regulatory effects of acetylcholine on salt tolerance of Nicotiana benthamiana.
    Qin C; Ahanger MA; Lin B; Huang Z; Zhou J; Ahmed N; Ai S; Mustafa NSA; Ashraf M; Zhang L
    Phytochemistry; 2021 Jan; 181():112582. PubMed ID: 33246307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla.
    Guo H; Wang Y; Wang L; Hu P; Wang Y; Jia Y; Zhang C; Zhang Y; Zhang Y; Wang C; Yang C
    Plant Biotechnol J; 2017 Jan; 15(1):107-121. PubMed ID: 27368149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.