BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36968410)

  • 21. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera.
    He Z; Liu C; Wang X; Wang R; Tian Y; Chen Y
    Biochem Genet; 2021 Apr; 59(2):398-421. PubMed ID: 33040171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization.
    Xu JX; Li ZY; Lv X; Yan H; Zhou GY; Cao LX; Yang Q; He YH
    PLoS One; 2020; 15(4):e0232096. PubMed ID: 32339210
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Yang D; Luo L; Liu Y; Li H
    J Fungi (Basel); 2024 May; 10(5):. PubMed ID: 38786685
    [No Abstract]   [Full Text] [Related]  

  • 24. The Histone Acetyltransferase CfGcn5 Regulates Growth, Development, and Pathogenicity in the Anthracnose Fungus
    Zhang S; Guo Y; Chen S; Li H
    Front Microbiol; 2021; 12():680415. PubMed ID: 34248895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China.
    Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y
    Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Zheng XR; Zhang MJ; Qiao YH; Li R; Alkan N; Chen JY; Chen FM
    Front Plant Sci; 2022; 13():933484. PubMed ID: 35845688
    [No Abstract]   [Full Text] [Related]  

  • 27. The CfSnt2-Dependent Deacetylation of Histone H3 Mediates Autophagy and Pathogenicity of
    Guo Y; Chen Z; Li H; Zhang S
    J Fungi (Basel); 2022 Sep; 8(9):. PubMed ID: 36135699
    [No Abstract]   [Full Text] [Related]  

  • 28. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in
    Li C; Long Y; Lu M; Zhou J; Wang S; Xu Y; Tan X
    Front Plant Sci; 2022; 13():1065872. PubMed ID: 36762174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormone analysis and candidate genes identification associated with seed size in
    Ji K; Song Q; Yu X; Tan C; Wang L; Chen L; Xiang X; Gong W; Yuan D
    R Soc Open Sci; 2022 Mar; 9(3):211138. PubMed ID: 35360359
    [No Abstract]   [Full Text] [Related]  

  • 30. Selection of potential reference genes for RT-qPCR in the plant pathogenic fungus
    Chen X; Chen X; Tan Q; He Y; Wang Z; Zhou G; Liu J
    Front Microbiol; 2022; 13():982748. PubMed ID: 36003927
    [No Abstract]   [Full Text] [Related]  

  • 31. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 32. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic and genetic advances of oiltea-camellia (
    Ye C; He Z; Peng J; Wang R; Wang X; Fu M; Zhang Y; Wang A; Liu Z; Jia G; Chen Y; Tian B
    Front Plant Sci; 2023; 14():1101766. PubMed ID: 37077639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera.
    Ye Z; Yu J; Yan W; Zhang J; Yang D; Yao G; Liu Z; Wu Y; Hou X
    Hortic Res; 2021 Jul; 8(1):157. PubMed ID: 34193845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fruit economic characteristics and yields of 40 superior Camellia oleifera Abel plants in the low-hot valley area of Guizhou Province, China.
    Yang L; Gao C; Xie J; Qiu J; Deng Q; Zhou Y; Liao D; Deng C
    Sci Rep; 2022 Apr; 12(1):7068. PubMed ID: 35488002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of mRNA and miRNA analysis reveals the differentially regulatory network in two different
    He Z; Liu C; Zhang Z; Wang R; Chen Y
    Front Plant Sci; 2022; 13():1001357. PubMed ID: 36247533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic and Metabolomic Analyses Reveal a Potential Mechanism to Improve Soybean Resistance to Anthracnose.
    Zhu L; Yang Q; Yu X; Fu X; Jin H; Yuan F
    Front Plant Sci; 2022; 13():850829. PubMed ID: 35574068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 39. Cell Wall Integrity Mediated by CfCHS1 Is Important for Growth, Stress Responses and Pathogenicity in
    Gan R; Zhang S; Li H
    J Fungi (Basel); 2023 Jun; 9(6):. PubMed ID: 37367579
    [No Abstract]   [Full Text] [Related]  

  • 40. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars.
    Chen Y; Wang B; Chen J; Wang X; Wang R; Peng S; Chen L; Ma L; Luo J
    Front Plant Sci; 2015; 6():189. PubMed ID: 25873921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.