These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36968410)

  • 41. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars.
    Chen Y; Wang B; Chen J; Wang X; Wang R; Peng S; Chen L; Ma L; Luo J
    Front Plant Sci; 2015; 6():189. PubMed ID: 25873921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in
    He Y; Song Q; Wu Y; Ye S; Chen S; Chen H
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183315
    [No Abstract]   [Full Text] [Related]  

  • 43. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H
    Wang Y; Hao X; Lu Q; Wang L; Qian W; Li N; Ding C; Wang X; Yang Y
    Hortic Res; 2018; 5():18. PubMed ID: 29619229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic Changes of Caffeine in Tea Plant (Camellia sinensis (L.) O. Kuntze) as Defense Response to Colletotrichum fructicola.
    Wang YC; Qian WJ; Li NN; Hao XY; Wang L; Xiao B; Wang XC; Yang YJ
    J Agric Food Chem; 2016 Sep; 64(35):6685-93. PubMed ID: 27541180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum.
    Wen F; Wu X; Li T; Jia M; Liao L
    BMC Plant Biol; 2022 Mar; 22(1):115. PubMed ID: 35287589
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination.
    Long W; Yao X; Wang K; Sheng Y; Lv L
    BMC Plant Biol; 2022 May; 22(1):265. PubMed ID: 35643426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative transcriptomics and genomic analyses reveal differential gene expression related to
    Yang M; Zhou C; Yang H; Kuang R; Liu K; Huang B; Wei Y
    Front Plant Sci; 2022; 13():1038598. PubMed ID: 36618670
    [No Abstract]   [Full Text] [Related]  

  • 48. STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber.
    Pan J; Tan J; Wang Y; Zheng X; Owens K; Li D; Li Y; Weng Y
    Theor Appl Genet; 2018 Jul; 131(7):1577-1587. PubMed ID: 29680862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The SNARE Protein CfVam7 Is Required for Growth, Endoplasmic Reticulum Stress Response, and Pathogenicity of
    Li S; Zhang S; Li B; Li H
    Front Microbiol; 2021; 12():736066. PubMed ID: 34721333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unilateral cross-incompatibility between
    Gong H; Chang Y; Xu J; Yu X; Gong W
    Front Plant Sci; 2023; 14():1182745. PubMed ID: 37465382
    [No Abstract]   [Full Text] [Related]  

  • 51. Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings.
    Chen W; Ye T; Sun Q; Niu T; Zhang J
    Front Plant Sci; 2022; 13():1058092. PubMed ID: 36726674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in Camellia oleifera.
    Lin P; Yin H; Yan C; Yao X; Wang K
    J Agric Food Chem; 2019 Mar; 67(9):2547-2562. PubMed ID: 30758959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development.
    Yu F; Huaxia Y; Lu W; Wu C; Cao X; Guo X
    BMC Plant Biol; 2012 Aug; 12():144. PubMed ID: 22883108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Applications of Chinese
    Quan W; Wang A; Gao C; Li C
    Front Chem; 2022; 10():921246. PubMed ID: 35685348
    [No Abstract]   [Full Text] [Related]  

  • 55. Genetic relationships and low diversity among the tea-oil
    Qi H; Sun X; Yan W; Ye H; Chen J; Yu J; Jun D; Wang C; Xia T; Chen X; Li D; Zheng D
    Front Plant Sci; 2022; 13():996731. PubMed ID: 36247558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity and Antifungal Activity of Endophytic Fungi Associated with
    Yu J; Wu Y; He Z; Li M; Zhu K; Gao B
    Mycobiology; 2018; 46(2):85-91. PubMed ID: 29963309
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Cysteine Protease CfAtg4 Interacts with CfAtg8 to Govern the Growth, Autophagy and Pathogenicity of
    Guo S; Zhang S
    J Fungi (Basel); 2024 Jun; 10(6):. PubMed ID: 38921417
    [No Abstract]   [Full Text] [Related]  

  • 58. Manganese accumulation and plant physiology behavior of Camellia oleifera in response to different levels of nitrogen fertilization.
    Li Y; Liu K; Zhu J; Jiang Y; Huang Y; Zhou Z; Chen C; Yu F
    Ecotoxicol Environ Saf; 2019 Nov; 184():109603. PubMed ID: 31473561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning and functional characterization of CoFT1, a homolog of FLOWERING LOCUS T (FT) from Camellia oleifera.
    Lei H; Su S; Ma L; Wen Y; Wang X
    Gene; 2017 Aug; 626():215-226. PubMed ID: 28546125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative transcriptomic analysis of high- and low-oil
    Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S
    3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.