These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36968483)

  • 21. [Effect of transcutaneous auricular vagus nerve stimulation on the expressions of GFAP and MAP2 in ischemic penumbra of rats with middle cerebral artery ischemia].
    Zhao JJ; Li YL; Zhang JL; Ren M; Xu JJ; Wang WJ; Zhou ZQ; Wang ZH; Zhang YJ; Shan CL
    Zhen Ci Yan Jiu; 2022 Jan; 47(1):33-8. PubMed ID: 35128868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of transcutaneous auricular vagus nerve stimulation on reversal learning, tonic pupil size, salivary alpha-amylase, and cortisol.
    D'Agostini M; Burger AM; Franssen M; Claes N; Weymar M; von Leupoldt A; Van Diest I
    Psychophysiology; 2021 Oct; 58(10):e13885. PubMed ID: 34245461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation.
    Borgmann D; Rigoux L; Kuzmanovic B; Edwin Thanarajah S; Münte TF; Fenselau H; Tittgemeyer M
    Neuroimage; 2021 Dec; 244():118566. PubMed ID: 34509623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcutaneous Auricular Vagus Nerve Stimulation at 20 Hz Improves Depression-Like Behaviors and Down-Regulates the Hyperactivity of HPA Axis in Chronic Unpredictable Mild Stress Model Rats.
    Li S; Wang Y; Gao G; Guo X; Zhang Y; Zhang Z; Wang Y; Zhang J; Wang J; Li L; Yang Y; Rong P
    Front Neurosci; 2020; 14():680. PubMed ID: 32765210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis.
    Giraudier M; Ventura-Bort C; Burger AM; Claes N; D'Agostini M; Fischer R; Franssen M; Kaess M; Koenig J; Liepelt R; Nieuwenhuis S; Sommer A; Usichenko T; Van Diest I; von Leupoldt A; Warren CM; Weymar M
    Brain Stimul; 2022; 15(6):1378-1388. PubMed ID: 36183953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcutaneous auricular vagus nerve stimulation and heart rate variability: Analysis of parameters and targets.
    Machetanz K; Berelidze L; Guggenberger R; Gharabaghi A
    Auton Neurosci; 2021 Dec; 236():102894. PubMed ID: 34662844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate.
    Badran BW; Mithoefer OJ; Summer CE; LaBate NT; Glusman CE; Badran AW; DeVries WH; Summers PM; Austelle CW; McTeague LM; Borckardt JJ; George MS
    Brain Stimul; 2018; 11(4):699-708. PubMed ID: 29716843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcutaneous auricular vagus nerve stimulation effects on inflammatory markers and clinical evolution of patients with COVID-19: a pilot randomized clinical trial.
    Uehara L; Corrêa JCF; Ritti R; Leite P; de Faria DRG; Pacheco-Barrios K; Castelo-Branco L; Fregni F; Corrêa FI
    Expert Rev Med Devices; 2022 Nov; 19(11):915-920. PubMed ID: 36540947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcutaneous Auricular Vagus Nerve Stimulation (tAVNS) Delivered During Upper Limb Interactive Robotic Training Demonstrates Novel Antagonist Control for Reaching Movements Following Stroke.
    Chang JL; Coggins AN; Saul M; Paget-Blanc A; Straka M; Wright J; Datta-Chaudhuri T; Zanos S; Volpe BT
    Front Neurosci; 2021; 15():767302. PubMed ID: 34899170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: An fMRI study.
    Zhang Y; Liu J; Li H; Yan Z; Liu X; Cao J; Park J; Wilson G; Liu B; Kong J
    Neuroimage Clin; 2019; 24():101971. PubMed ID: 31648171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auricular transcutaneous vagus nerve stimulation modulates the heart-evoked potential.
    Poppa T; Benschop L; Horczak P; Vanderhasselt MA; Carrette E; Bechara A; Baeken C; Vonck K
    Brain Stimul; 2022; 15(1):260-269. PubMed ID: 34933143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of low-and high-frequency non-invasive transcutaneous auricular vagal nerve stimulation (taVNS) on gastric slow waves evaluated using in vivo high-resolution mapping in porcine.
    Sukasem A; Cakmak YO; Khwaounjoo P; Gharibans A; Du P
    Neurogastroenterol Motil; 2020 Jul; 32(7):e13852. PubMed ID: 32281229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis.
    Wolf V; Kühnel A; Teckentrup V; Koenig J; Kroemer NB
    Psychophysiology; 2021 Nov; 58(11):e13933. PubMed ID: 34473846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway.
    Wang JY; Zhang Y; Chen Y; Wang Y; Li SY; Wang YF; Zhang ZX; Zhang J; Rong P
    J Neuroinflammation; 2021 Dec; 18(1):291. PubMed ID: 34920740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of non-invasive vagus nerve stimulation on memory recall in reading: A pilot study.
    Thakkar VJ; Richardson ZA; Dang A; Centanni TM
    Behav Brain Res; 2023 Feb; 438():114164. PubMed ID: 36265760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin.
    Kozorosky EM; Lee CH; Lee JG; Nunez Martinez V; Padayachee LE; Stauss HM
    Physiol Rep; 2022 Apr; 10(8):e15253. PubMed ID: 35441808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcutaneous auricular vagus nerve stimulation (taVNS) given for poor feeding in at-risk infants also improves their motor abilities.
    Aljuhani T; Haskin H; Davis S; Reiner A; Moss HG; Badran BW; George MS; Jenkins D; Coker-Bolt P
    J Pediatr Rehabil Med; 2022; 15(3):447-457. PubMed ID: 36093716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcutaneous auricular vagus nerve stimulators: a review of past, present, and future devices.
    Wang L; Wang Y; Wang Y; Wang F; Zhang J; Li S; Wu M; Li L; Rong P
    Expert Rev Med Devices; 2022 Jan; 19(1):43-61. PubMed ID: 34937487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcutaneous auricular vagus nerve stimulation increases eye-gaze on salient facial features and oxytocin release.
    Zhu S; Qing Y; Zhang Y; Zhang X; Ding F; Zhang R; Yao S; Kendrick KM; Zhao W
    Psychophysiology; 2022 Nov; 59(11):e14107. PubMed ID: 35638321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Transcutaneous auricular vagus nerve stimulation promotes gastric motility by up-rgulating α7nAChR and suppressing NF-κB p65 expression in duodenum in rats with functional dyspepsia].
    Han J; Wei W; Wang HC; Zhang T; Wang Y; Hou LW; Li SY; Zhang JL; Rong PJ
    Zhen Ci Yan Jiu; 2022 Jun; 47(6):517-24. PubMed ID: 35764519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.