These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 36968488)
61. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193 [TBL] [Abstract][Full Text] [Related]
62. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents. Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445 [TBL] [Abstract][Full Text] [Related]
63. [Physiological problems of manned mission to Mars]. Grigor'ev AI Ross Fiziol Zh Im I M Sechenova; 2007 May; 93(5):473-84. PubMed ID: 17650616 [TBL] [Abstract][Full Text] [Related]
64. Use of microgravity simulators for plant biological studies. Herranz R; Valbuena MA; Manzano A; Kamal KY; Medina FJ Methods Mol Biol; 2015; 1309():239-54. PubMed ID: 25981780 [TBL] [Abstract][Full Text] [Related]
65. Sperm Motility of Mice under Simulated Microgravity and Hypergravity. Ogneva IV; Usik MA; Biryukov NS; Zhdankina YS Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32709012 [TBL] [Abstract][Full Text] [Related]
66. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain. Ishikawa C; Li H; Ogura R; Yoshimura Y; Kudo T; Shirakawa M; Shiba D; Takahashi S; Morita H; Shiga T PLoS One; 2017; 12(6):e0177833. PubMed ID: 28591153 [TBL] [Abstract][Full Text] [Related]
67. Optogenetic Control of Human Stem Cell-Derived Neurons. Habibey R; Striebel J; Sharma K; Busskamp V Methods Mol Biol; 2022; 2501():339-360. PubMed ID: 35857237 [TBL] [Abstract][Full Text] [Related]
68. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments. Morita H; Obata K; Abe C; Shiba D; Shirakawa M; Kudo T; Takahashi S PLoS One; 2015; 10(7):e0133981. PubMed ID: 26221724 [TBL] [Abstract][Full Text] [Related]
69. Gravity related research with fishes--perspectives in regard to the upcoming International Space Station, ISS. Rahmann H; Anken RH Adv Space Res; 2002; 30(4):697-710. PubMed ID: 12528666 [TBL] [Abstract][Full Text] [Related]
70. Effects of gravity, hypergravity and microgravity on vestibular neurones of the crab. Fraser PJ; Araujo R; Alferez D; Carneiro MJ; Pollard M J Gravit Physiol; 2004 Jul; 11(2):P1-4. PubMed ID: 16229107 [TBL] [Abstract][Full Text] [Related]
71. 3-D multi-electrode arrays detect early spontaneous electrophysiological activity in 3-D neuronal-astrocytic co-cultures. Vernekar VN; LaPlaca MC Biomed Eng Lett; 2020 Nov; 10(4):579-591. PubMed ID: 33194249 [TBL] [Abstract][Full Text] [Related]
72. Towards animal-free neurotoxicity screening: Applicability of hiPSC-derived neuronal models for in vitro seizure liability assessment. Tukker AM; Van Kleef RGDM; Wijnolts FMJ; De Groot A; Westerink RHS ALTEX; 2020; 37(1):121-135. PubMed ID: 31686111 [TBL] [Abstract][Full Text] [Related]
73. Grip forces exerted against stationary held objects during gravity changes. Hermsdörfer J; Marquardt C; Philipp J; Zierdt A; Nowak D; Glasauer S; Mai N Exp Brain Res; 1999 May; 126(2):205-14. PubMed ID: 10369143 [TBL] [Abstract][Full Text] [Related]
74. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084 [TBL] [Abstract][Full Text] [Related]
75. Effects of microgravity and hypergravity on platelet functions. Dai K; Wang Y; Yan R; Shi Q; Wang Z; Yuan Y; Cheng H; Li S; Fan Y; Zhuang F Thromb Haemost; 2009 May; 101(5):902-10. PubMed ID: 19404544 [TBL] [Abstract][Full Text] [Related]
76. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions. Li S; Shi Q; Liu G; Zhang W; Wang Z; Wang Y; Dai K J Appl Physiol (1985); 2010 May; 108(5):1241-9. PubMed ID: 20133435 [TBL] [Abstract][Full Text] [Related]
77. Influence of gravity on the circadian timing system. Fuller CA; Hoban-Higgins TM; Griffin DW; Murakami DM Adv Space Res; 1994; 14(8):399-408. PubMed ID: 11537948 [TBL] [Abstract][Full Text] [Related]
78. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training. Yang Y; Kaplan A; Pierre M; Adams G; Cavanagh P; Takahashi C; Kreitenberg A; Hicks J; Keyak J; Caiozzo V Aviat Space Environ Med; 2007 Jan; 78(1):2-9. PubMed ID: 17225475 [TBL] [Abstract][Full Text] [Related]
79. Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Verma AK; Xu D; Bruner M; Garg A; Goswami N; Blaber AP; Tavakolian K Front Physiol; 2018; 9():712. PubMed ID: 29988521 [TBL] [Abstract][Full Text] [Related]
80. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity. Sulkowski GM; Li GH; Sajdel-Sulkowska EM Adv Space Res; 2004; 33(8):1423-30. PubMed ID: 15806709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]