These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36969476)

  • 1. Effect of Water Content on Ethanol Steam Reforming in the Nonthermal Plasma.
    Ulejczyk B; Nogal Ł; Młotek M; Krawczyk K
    ACS Omega; 2023 Mar; 8(11):10119-10125. PubMed ID: 36969476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.
    Homsi D; Rached JA; Aouad S; Gennequin C; Dahdah E; Estephane J; Tidahy HL; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9907-9913. PubMed ID: 27552997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Fe Species of Ni-Based Catalysts for Efficient Low-Temperature Ethanol Steam Reforming.
    Wu Y; Pei C; Tian H; Liu T; Zhang X; Chen S; Xiao Q; Wang X; Gong J
    JACS Au; 2021 Sep; 1(9):1459-1470. PubMed ID: 34604855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric pressure microwave (915 MHz) plasma for hydrogen production from steam reforming of ethanol.
    Miotk R; Hrycak B; Czylkowski D; Jasiński M; Dors M; Mizeraczyk J
    Sci Rep; 2024 Jun; 14(1):14959. PubMed ID: 38942801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.
    Wu C; Williams PT
    Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts.
    Guil JM; Homs N; Llorca J; Ramírez de la Piscina P
    J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
    Wu C; Williams PT
    Environ Sci Technol; 2010 Aug; 44(15):5993-8. PubMed ID: 20597551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material.
    da Costa-Serra JF; Navarro MT; Rey F; Chica A
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32998234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol.
    Gonçalves AA; Faustino PB; Assaf JM; Jaroniec M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6079-6092. PubMed ID: 28117577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts: effect of the support.
    Cai W; Piscina PR; Gabrowska K; Homs N
    Bioresour Technol; 2013 Jan; 128():467-71. PubMed ID: 23201530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts.
    Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct coking depth in steam reforming of oxygen-containing organics and hydrocarbons.
    Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu G; Hu X
    J Colloid Interface Sci; 2023 Jun; 639():385-400. PubMed ID: 36812854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.
    Yoshida H; Yamaoka R; Arai M
    Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.
    Go GS; Go YJ; Lee HJ; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1855-8. PubMed ID: 27433687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic reforming of toluene as tar model compound: effect of Ce and Ce-Mg promoter using Ni/olivine catalyst.
    Zhang R; Wang H; Hou X
    Chemosphere; 2014 Feb; 97():40-6. PubMed ID: 24275153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Production from Ethanol Reforming by a Microwave Discharge Using Air as a Working Gas.
    Guo W; Zheng X; Qin Z; Guo Q; Liu L
    ACS Omega; 2021 Dec; 6(49):33533-33541. PubMed ID: 34926902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.