These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36969496)
1. Network-Based Method to Investigate the Promoted Cell Apoptosis Mechanisms of Oridonin in OSCC through the RNA-Transcriptome. Wu G; Guo Y; Liu Y; Cai X; Deng T; Pei T; Huang L; Chen K; Pan X J Immunol Res; 2023; 2023():5293677. PubMed ID: 36969496 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome Mapping of the Internal N7-Methylguanosine Methylome in Messenger RNAs in Human Oral Squamous Cell Carcinoma. Li M; Song N; Sun D; Yu Y; Zheng W; Zhang X; Ying J; Sun R; Xu M; Guo T; Jiang Y Front Biosci (Landmark Ed); 2023 Dec; 28(12):330. PubMed ID: 38179755 [TBL] [Abstract][Full Text] [Related]
3. A Five-mRNA Expression Signature to Predict Survival in Oral Squamous Cell Carcinoma by Integrated Bioinformatic Analyses. Guo H; Li C; Su X; Huang X Genet Test Mol Biomarkers; 2021 Aug; 25(8):517-527. PubMed ID: 34406843 [No Abstract] [Full Text] [Related]
4. Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Xu Z; Jiang P; He S Med Sci Monit; 2019 Dec; 25():9216-9226. PubMed ID: 31794546 [TBL] [Abstract][Full Text] [Related]
5. Identification of a Gene Prognostic Signature for Oral Squamous Cell Carcinoma by RNA Sequencing and Bioinformatics. Zhang YY; Mao MH; Han ZX Biomed Res Int; 2021; 2021():6657767. PubMed ID: 33869632 [TBL] [Abstract][Full Text] [Related]
6. Identifying Drug Targets of Oral Squamous Cell Carcinoma through a Systems Biology Method and Genome-Wide Microarray Data for Drug Discovery by Deep Learning and Drug Design Specifications. Lin YC; Chen BS Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142321 [TBL] [Abstract][Full Text] [Related]
7. Network pharmacology and bioinformatics analysis on the underlying mechanisms of baicalein against oral squamous cell carcinoma. Tang B; Dong Y J Gene Med; 2023 Jun; 25(6):e3490. PubMed ID: 36843559 [TBL] [Abstract][Full Text] [Related]
8. CDK1 and CCNA2 play important roles in oral squamous cell carcinoma. Zhang J; Di Y; Zhang B; Li T; Li D; Zhang H Medicine (Baltimore); 2024 Apr; 103(16):e37831. PubMed ID: 38640322 [TBL] [Abstract][Full Text] [Related]
9. Potential role of differentially expressed lncRNAs in the pathogenesis of oral squamous cell carcinoma. Zhang S; Tian L; Ma P; Sun Q; Zhang K; GuanchaoWang ; Liu H; Xu B Arch Oral Biol; 2015 Oct; 60(10):1581-7. PubMed ID: 26276270 [TBL] [Abstract][Full Text] [Related]
10. Porphyromonas gingivalis Activation of Tumor-Associated Macrophages via DOK3 Promotes Recurrence of Oral Squamous Cell Carcinoma. Li CX; Su Y; Gong ZC; Liu H Med Sci Monit; 2022 Oct; 28():e937126. PubMed ID: 36210538 [TBL] [Abstract][Full Text] [Related]
11. Identification of Key Biomarkers and Potential Molecular Mechanisms in Oral Squamous Cell Carcinoma by Bioinformatics Analysis. Yang B; Dong K; Guo P; Guo P; Jie G; Zhang G; Li T J Comput Biol; 2020 Jan; 27(1):40-54. PubMed ID: 31424263 [TBL] [Abstract][Full Text] [Related]
12. Decreased CSTA expression promotes lymphatic metastasis and predicts poor survival in oral squamous cell carcinoma. Wang Y; Wang L; Li X; Qu X; Han N; Ruan M; Zhang C Arch Oral Biol; 2021 Jun; 126():105116. PubMed ID: 33831734 [TBL] [Abstract][Full Text] [Related]
13. Animal model and bioinformatics analyses suggest the TIMP1/MMP9 axis as a potential biomarker in oral squamous cell carcinoma. Xu G; Wei J; Huangfu B; Gao J; Wang X; Xiao L; Xuan R; Chen Z; Song G Mol Carcinog; 2020 Nov; 59(11):1302-1316. PubMed ID: 33006223 [TBL] [Abstract][Full Text] [Related]
14. HOXA1 silencing inhibits cisplatin resistance of oral squamous cell carcinoma cells via IκB/NF-κB signaling pathway. Zhu R; Mao Y; Xu X; Li Y; Zheng J Anticancer Drugs; 2024 Jul; 35(6):492-500. PubMed ID: 38477942 [TBL] [Abstract][Full Text] [Related]
15. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Fang Z; Zhao J; Xie W; Sun Q; Wang H; Qiao B Cancer Med; 2017 Dec; 6(12):2897-2908. PubMed ID: 29125238 [TBL] [Abstract][Full Text] [Related]
16. PER2 binding to HSP90 enhances immune response against oral squamous cell carcinoma by inhibiting IKK/NF-κB pathway and PD-L1 expression. Zhang Z; Sun D; Tang H; Ren J; Yin S; Yang K J Immunother Cancer; 2023 Nov; 11(11):. PubMed ID: 37914384 [TBL] [Abstract][Full Text] [Related]
17. Screening and identification of autophagy-related biomarkers for oral squamous cell carcinoma (OSCC) via integrated bioinformatics analysis. Huang GZ; Lu ZY; Rao Y; Gao H; Lv XZ J Cell Mol Med; 2021 May; 25(9):4444-4454. PubMed ID: 33837652 [TBL] [Abstract][Full Text] [Related]
18. IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma. Wang X; Xu H; Zhou Z; Guo S; Chen R Biosci Rep; 2022 Feb; 42(2):. PubMed ID: 35129592 [TBL] [Abstract][Full Text] [Related]
19. Malignant Transformation of Normal Oral Tissue to Dysplasia and Early Oral Squamous Cell Carcinoma: An Jamshidi S; Tavangar M; Shojaei S; Taherkhani A Anal Cell Pathol (Amst); 2024; 2024():6260651. PubMed ID: 39376501 [No Abstract] [Full Text] [Related]
20. CircDOCK1 suppresses cell apoptosis via inhibition of miR‑196a‑5p by targeting BIRC3 in OSCC. Wang L; Wei Y; Yan Y; Wang H; Yang J; Zheng Z; Zha J; Bo P; Tang Y; Guo X; Chen W; Zhu X; Ge L Oncol Rep; 2018 Mar; 39(3):951-966. PubMed ID: 29286141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]