These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36969503)
1. Anatomical evaluation of deep-learning synthetic computed tomography images generated from male pelvis cone-beam computed tomography. de Hond YJM; Kerckhaert CEM; van Eijnatten MAJM; van Haaren PMA; Hurkmans CW; Tijssen RHN Phys Imaging Radiat Oncol; 2023 Jan; 25():100416. PubMed ID: 36969503 [TBL] [Abstract][Full Text] [Related]
2. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy. Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234 [TBL] [Abstract][Full Text] [Related]
3. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Liu J; Yan H; Cheng H; Liu J; Sun P; Wang B; Mao R; Du C; Luo S Quant Imaging Med Surg; 2021 Dec; 11(12):4820-4834. PubMed ID: 34888192 [TBL] [Abstract][Full Text] [Related]
4. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
5. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
6. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
7. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy. Liu Y; Lei Y; Wang T; Fu Y; Tang X; Curran WJ; Liu T; Patel P; Yang X Med Phys; 2020 Jun; 47(6):2472-2483. PubMed ID: 32141618 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based 4D-synthetic CTs from sparse-view CBCTs for dose calculations in adaptive proton therapy. Thummerer A; Seller Oria C; Zaffino P; Visser S; Meijers A; Guterres Marmitt G; Wijsman R; Seco J; Langendijk JA; Knopf AC; Spadea MF; Both S Med Phys; 2022 Nov; 49(11):6824-6839. PubMed ID: 35982630 [TBL] [Abstract][Full Text] [Related]
9. Cone beam CT based validation of neural network generated synthetic CTs for radiotherapy in the head region. Irmak S; Zimmermann L; Georg D; Kuess P; Lechner W Med Phys; 2021 Aug; 48(8):4560-4571. PubMed ID: 34028053 [TBL] [Abstract][Full Text] [Related]
10. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy. Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874 [TBL] [Abstract][Full Text] [Related]
11. New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer. Xie K; Gao L; Xi Q; Zhang H; Zhang S; Zhang F; Sun J; Lin T; Sui J; Ni X Comput Methods Programs Biomed; 2023 Apr; 231():107393. PubMed ID: 36739623 [TBL] [Abstract][Full Text] [Related]
12. Generating synthetic images from cone beam computed tomography using self-attention residual UNet for head and neck radiotherapy. Yoganathan SA; Aouadi S; Ahmed S; Paloor S; Torfeh T; Al-Hammadi N; Hammoud R Phys Imaging Radiat Oncol; 2023 Oct; 28():100512. PubMed ID: 38111501 [TBL] [Abstract][Full Text] [Related]
13. Deep learning-based thoracic CBCT correction with histogram matching. Qiu RLJ; Lei Y; Shelton J; Higgins K; Bradley JD; Curran WJ; Liu T; Kesarwala AH; Yang X Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34654011 [TBL] [Abstract][Full Text] [Related]
14. Transformer CycleGAN with uncertainty estimation for CBCT based synthetic CT in adaptive radiotherapy. Rusanov B; Hassan GM; Reynolds M; Sabet M; Rowshanfarzad P; Bucknell N; Gill S; Dass J; Ebert M Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38198726 [No Abstract] [Full Text] [Related]
15. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
16. Generation of synthetic CT from CBCT using deep learning approaches for head and neck cancer patients. Aouadi S; Yoganathan SA; Torfeh T; Paloor S; Caparrotti P; Hammoud R; Al-Hammadi N Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37489854 [No Abstract] [Full Text] [Related]
17. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma. Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of CycleGAN enhanced low dose CBCT imaging for prostate radiotherapy dose calculation. Chan Y; Li M; Parodi K; Belka C; Landry G; Kurz C Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37054740 [TBL] [Abstract][Full Text] [Related]
19. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204 [No Abstract] [Full Text] [Related]
20. Evaluation of a cycle-generative adversarial network-based cone-beam CT to synthetic CT conversion algorithm for adaptive radiation therapy. Eckl M; Hoppen L; Sarria GR; Boda-Heggemann J; Simeonova-Chergou A; Steil V; Giordano FA; Fleckenstein J Phys Med; 2020 Dec; 80():308-316. PubMed ID: 33246190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]