These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36969593)

  • 1. Failure to improve task performance after visuomotor training with error reduction feedback for young adults.
    Lin YT; Chen YC; Chang GC; Hwang IS
    Front Physiol; 2023; 14():1066325. PubMed ID: 36969593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.
    Chen YC; Lin LL; Lin YT; Hu CL; Hwang IS
    Front Hum Neurosci; 2017; 11():538. PubMed ID: 29167637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Motor Benefits of Visual Feedback of Error Reduction for Older Adults.
    Hwang IS; Hu CL; Huang WM; Tsai YY; Chen YC
    J Aging Phys Act; 2020 Dec; 28(6):934-942. PubMed ID: 32702665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms.
    Hwang IS; Hu CL; Yang ZR; Lin YT; Chen YC
    Front Physiol; 2019; 10():131. PubMed ID: 30842742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Front Physiol; 2017; 8():140. PubMed ID: 28348530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Older and younger adults differ in time course of skill acquisition but not in overall improvement in a bimanual visuomotor tracking task.
    Zvornik A; Andersen KA; Petersen AD; Novén M; Siebner HR; Lundbye-Jensen J; Karabanov AN
    Front Aging Neurosci; 2024; 16():1373252. PubMed ID: 38665899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual influences of error size on voluntary force control during a compound sinusoidal force task.
    Chen YC; Lin YT; Chang GC; Hwang IS
    Hum Mov Sci; 2017 Dec; 56(Pt B):46-53. PubMed ID: 29101823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of precision grip tasks on cervical spinal network excitability in humans.
    Roche N; Bussel B; Maier MA; Katz R; Lindberg P
    J Physiol; 2011 Jul; 589(Pt 14):3545-58. PubMed ID: 21606115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time error detection but not error correction drives automatic visuomotor adaptation.
    Hinder MR; Riek S; Tresilian JR; de Rugy A; Carson RG
    Exp Brain Res; 2010 Mar; 201(2):191-207. PubMed ID: 19830412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent visual feedback can boost motor learning of rhythmic movements: evidence for error feedback beyond cycles.
    Ikegami T; Hirashima M; Osu R; Nozaki D
    J Neurosci; 2012 Jan; 32(2):653-7. PubMed ID: 22238101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of visual information compromises the ability of older adults to control novel fine motor tasks.
    Baweja HS; Kwon M; Onushko T; Wright DL; Corcos DM; Christou EA
    Exp Brain Res; 2015 Dec; 233(12):3475-88. PubMed ID: 26298044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual information processing in older adults: reaction time and motor unit pool modulation.
    Kwon M; Christou EA
    J Neurophysiol; 2018 Nov; 120(5):2630-2639. PubMed ID: 30207861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related decline of online visuomotor adaptation: a combined effect of deteriorations of motor anticipation and execution.
    Li N; Liu J; Xie Y; Ji W; Chen Z
    Front Aging Neurosci; 2023; 15():1147079. PubMed ID: 37409009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in error-correction behavior according to visuomotor maps in goal-directed projection tasks.
    Kusafuka A; Onagawa R; Kimura A; Kudo K
    J Neurophysiol; 2022 Apr; 127(4):1171-1184. PubMed ID: 35320021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visuomotor Tracking Task for Enhancing Activity in Motor Areas of Stroke Patients.
    Wasaka T; Ando K; Nomura M; Toshima K; Tamaru T; Morita Y
    Brain Sci; 2022 Aug; 12(8):. PubMed ID: 36009126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of visuospatial resolution on discharge variability among motor units and force-discharge relation.
    Chen YC; Shih CL; Lin YT; Hwang IS
    Chin J Physiol; 2019; 62(4):166-174. PubMed ID: 31535632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.