These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36969725)
1. Global solutions of aggregation equations and other flows with random diffusion. Rosenzweig M; Staffilani G Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725 [TBL] [Abstract][Full Text] [Related]
2. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. Biler P; Corrias L; Dolbeault J J Math Biol; 2011 Jul; 63(1):1-32. PubMed ID: 20730434 [TBL] [Abstract][Full Text] [Related]
3. Delayed blow-up and enhanced diffusion by transport noise for systems of reaction-diffusion equations. Agresti A Stoch Partial Differ Equ; 2024; 12(3):1907-1981. PubMed ID: 39104877 [TBL] [Abstract][Full Text] [Related]
4. The Microscopic Derivation and Well-Posedness of the Stochastic Keller-Segel Equation. Huang H; Qiu J J Nonlinear Sci; 2021; 31(1):6. PubMed ID: 33758469 [TBL] [Abstract][Full Text] [Related]
5. ASYMPTOTIC BEHAVIOR OF THE STOCHASTIC KELLER-SEGEL EQUATIONS. Shang Y; Tian JP; Wang B Discrete Continuous Dyn Syst Ser B; 2019 Mar; 24(3):1367-1391. PubMed ID: 35221801 [TBL] [Abstract][Full Text] [Related]
6. Convergence of a linearly transformed particle method for aggregation equations. Campos Pinto M; Carrillo JA; Charles F; Choi YP Numer Math (Heidelb); 2018; 139(4):743-793. PubMed ID: 30147150 [TBL] [Abstract][Full Text] [Related]
7. Biased random walk models for chemotaxis and related diffusion approximations. Alt W J Math Biol; 1980 Apr; 9(2):147-77. PubMed ID: 7365332 [TBL] [Abstract][Full Text] [Related]
8. Traveling wave solutions of a singular Keller-Segel system with logistic source. Li T; Wang ZA Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459 [TBL] [Abstract][Full Text] [Related]
9. Existence of solutions for stress-rate type strain-limiting viscoelasticity in Gevrey spaces. Bachmann L; De Anna F; Schlömerkemper A; Şengül Y Philos Trans A Math Phys Eng Sci; 2023 Dec; 381(2263):20220374. PubMed ID: 37926215 [TBL] [Abstract][Full Text] [Related]
10. Variational principles for stochastic soliton dynamics. Holm DD; Tyranowski TM Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150827. PubMed ID: 27118922 [TBL] [Abstract][Full Text] [Related]
11. Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity. Deng Q; Zeng F; Wang D Math Biosci Eng; 2022 Jun; 19(8):8580-8600. PubMed ID: 35801478 [TBL] [Abstract][Full Text] [Related]
12. A proof of validity for multiphase Whitham modulation theory. Bridges TJ; Kostianko A; Schneider G Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200203. PubMed ID: 33362408 [TBL] [Abstract][Full Text] [Related]
13. On the existence of radially symmetric blow-up solutions for the Keller-Segel model. Horstmann D J Math Biol; 2002 May; 44(5):463-78. PubMed ID: 12021985 [TBL] [Abstract][Full Text] [Related]
14. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Wen Z; Fan M; Asiri AM; Alzahrani EO; El-Dessoky MM; Kuang Y Math Biosci Eng; 2017 Apr; 14(2):407-420. PubMed ID: 27879106 [TBL] [Abstract][Full Text] [Related]
15. Free energy of a chemotactic model with nonlinear diffusion. Baek SK; Kim BJ Sci Rep; 2017 Aug; 7(1):8909. PubMed ID: 28827589 [TBL] [Abstract][Full Text] [Related]
16. Traveling wave solutions from microscopic to macroscopic chemotaxis models. Lui R; Wang ZA J Math Biol; 2010 Nov; 61(5):739-61. PubMed ID: 20037760 [TBL] [Abstract][Full Text] [Related]
17. Parabolic type equations associated with the Dirichlet form on the Sierpinski gasket. Liu X; Qian Z Probab Theory Relat Fields; 2019; 175(3):1063-1098. PubMed ID: 31700199 [TBL] [Abstract][Full Text] [Related]
18. Stable Singularity Formation for the Keller-Segel System in Three Dimensions. Glogić I; Schörkhuber B Arch Ration Mech Anal; 2024; 248(1):4. PubMed ID: 38188224 [TBL] [Abstract][Full Text] [Related]
19. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. Fahim K; Hausenblas E; Kovács M Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409 [TBL] [Abstract][Full Text] [Related]
20. Stochastic Liouville equation for particles driven by dichotomous environmental noise. Bressloff PC Phys Rev E; 2017 Jan; 95(1-1):012124. PubMed ID: 28208333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]