These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36969846)
1. Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Yildiz E; Gadenstaetter AJ; Gerlitz M; Landegger LD; Liepins R; Nieratschker M; Glueckert R; Staecker H; Honeder C; Arnoldner C Front Pharmacol; 2023; 14():1062379. PubMed ID: 36969846 [TBL] [Abstract][Full Text] [Related]
2. Insertion trauma of a novel inner ear catheter for intracochlear drug delivery. Gerlitz M; Yildiz E; Gadenstaetter AJ; Niisuke K; Kandathil SA; Nieratschker M; Landegger LD; Honeder C; Arnoldner C Front Vet Sci; 2024; 11():1397554. PubMed ID: 38903692 [TBL] [Abstract][Full Text] [Related]
3. Inner ear drug delivery through a cochlear implant: Pharmacokinetics in a Macaque experimental model. Manrique-Huarte R; Linera-Alperi MA; Parilli D; Rodriguez JA; Borro D; Dueck WF; Smyth D; Salt A; Manrique M Hear Res; 2021 May; 404():108228. PubMed ID: 33784550 [TBL] [Abstract][Full Text] [Related]
4. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Salt AN; Plontke SK Hear Res; 2018 Oct; 368():28-40. PubMed ID: 29551306 [TBL] [Abstract][Full Text] [Related]
5. Rhesus Cochlear and Vestibular Functions Are Preserved After Inner Ear Injection of Saline Volume Sufficient for Gene Therapy Delivery. Dai C; Lehar M; Sun DQ; Rvt LS; Carey JP; MacLachlan T; Brough D; Staecker H; Della Santina AM; Hullar TE; Della Santina CC J Assoc Res Otolaryngol; 2017 Aug; 18(4):601-617. PubMed ID: 28646272 [TBL] [Abstract][Full Text] [Related]
7. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. Peter MS; Warnecke A; Staecker H J Clin Med; 2022 Jan; 11(2):. PubMed ID: 35054010 [TBL] [Abstract][Full Text] [Related]
8. Intracochlear drug delivery: Fluorescent tracer evaluation for quantification of distribution in the cochlear partition. Ayoob AM; Peppi M; Tandon V; Langer R; Borenstein JT Eur J Pharm Sci; 2019 Jan; 126():49-58. PubMed ID: 30195649 [TBL] [Abstract][Full Text] [Related]
9. Round window membrane intracochlear drug delivery enhanced by induced advection. Borkholder DA; Zhu X; Frisina RD J Control Release; 2014 Jan; 174():171-6. PubMed ID: 24291333 [TBL] [Abstract][Full Text] [Related]
10. Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs. Salt A; Hartsock J; Gill R; Smyth D; Kirk J; Verhoeven K PLoS One; 2017; 12(8):e0183374. PubMed ID: 28817653 [TBL] [Abstract][Full Text] [Related]
11. Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea. Gunewardene N; Lam P; Ma Y; Caruso F; Wagstaff S; Richardson RT; Wise AK J Control Release; 2022 Feb; 342():295-307. PubMed ID: 34999140 [TBL] [Abstract][Full Text] [Related]
12. Intracochlear Drug Injections through the Round Window Membrane: Measures to Improve Drug Retention. Plontke SK; Hartsock JJ; Gill RM; Salt AN Audiol Neurootol; 2016; 21(2):72-9. PubMed ID: 26905306 [TBL] [Abstract][Full Text] [Related]
13. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model. Plontke SK; Siedow N; Wegener R; Zenner HP; Salt AN Audiol Neurootol; 2007; 12(1):37-48. PubMed ID: 17119332 [TBL] [Abstract][Full Text] [Related]
14. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Ding S; Xie S; Chen W; Wen L; Wang J; Yang F; Chen G Eur J Pharm Sci; 2019 Jan; 126():11-22. PubMed ID: 29499347 [TBL] [Abstract][Full Text] [Related]
15. Single-incision cochlear implantation and hearing evaluation in piglets and minipigs. Yildiz E; Gerlitz M; Gadenstaetter AJ; Landegger LD; Nieratschker M; Schum D; Schmied M; Haase A; Kanz F; Kramer AM; Glueckert R; Staecker H; Honeder C; Arnoldner C Hear Res; 2022 Dec; 426():108644. PubMed ID: 36343533 [TBL] [Abstract][Full Text] [Related]
16. Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex. Mynatt R; Hale SA; Gill RM; Plontke SK; Salt AN J Assoc Res Otolaryngol; 2006 Jun; 7(2):182-93. PubMed ID: 16718612 [TBL] [Abstract][Full Text] [Related]
17. [Quantitative interpretation of dexamethasone pharmacokinetics in human inner ear perilymph using computer simulations]. Liu H; Dong M Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 Nov; 24(22):1040-3. PubMed ID: 21322932 [TBL] [Abstract][Full Text] [Related]
18. Perilymph Kinetics of FITC-Dextran Reveals Homeostasis Dominated by the Cochlear Aqueduct and Cerebrospinal Fluid. Salt AN; Gill RM; Hartsock JJ J Assoc Res Otolaryngol; 2015 Jun; 16(3):357-71. PubMed ID: 25801074 [TBL] [Abstract][Full Text] [Related]
19. Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss. Rivera T; Sanz L; Camarero G; Varela-Nieto I Curr Drug Deliv; 2012 May; 9(3):231-42. PubMed ID: 22283653 [TBL] [Abstract][Full Text] [Related]
20. Dexamethasone concentration gradients along scala tympani after application to the round window membrane. Plontke SK; Biegner T; Kammerer B; Delabar U; Salt AN Otol Neurotol; 2008 Apr; 29(3):401-6. PubMed ID: 18277312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]