These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36969931)

  • 1. Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model.
    Eloranta AP; Perälä T; Kuparinen A
    Ecol Evol; 2023 Mar; 13(3):e9928. PubMed ID: 36969931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance.
    Boit A; Martinez ND; Williams RJ; Gaedke U
    Ecol Lett; 2012 Jun; 15(6):594-602. PubMed ID: 22513046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs.
    Keva O; Taipale SJ; Hayden B; Thomas SM; Vesterinen J; Kankaala P; Kahilainen KK
    Glob Chang Biol; 2021 Jan; 27(2):282-296. PubMed ID: 33124178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioenergetic framework for the temperature dependence of trophic interactions.
    Gilbert B; Tunney TD; McCann KS; DeLong JP; Vasseur DA; Savage V; Shurin JB; Dell AI; Barton BT; Harley CD; Kharouba HM; Kratina P; Blanchard JL; Clements C; Winder M; Greig HS; O'Connor MI
    Ecol Lett; 2014 Aug; 17(8):902-14. PubMed ID: 24894409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-evolutionary dynamics driven by fishing: From single species models to dynamic evolution within complex food webs.
    Perälä T; Kuparinen A
    Evol Appl; 2020 Dec; 13(10):2507-2520. PubMed ID: 33294005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species' ecological functionality alters the outcome of fish stocking success predicted by a food-web model.
    Uusi-Heikkilä S; Perälä T; Kuparinen A
    R Soc Open Sci; 2018 Aug; 5(8):180465. PubMed ID: 30225036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication.
    Fu H; Özkan K; Yuan G; Johansson LS; Søndergaard M; Lauridsen TL; Jeppesen E
    Sci Total Environ; 2021 Jul; 778():146368. PubMed ID: 34030386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longer Food Chains in Pelagic Ecosystems: Trophic Energetics of Animal Body Size and Metabolic Efficiency.
    McGarvey R; Dowling N; Cohen JE
    Am Nat; 2016 Jul; 188(1):76-86. PubMed ID: 27322123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shifting trophic control of fishery-ecosystem dynamics following biological invasions.
    Goto D; Dunlop ES; Young JD; Jackson DA
    Ecol Appl; 2020 Dec; 30(8):e02190. PubMed ID: 32506720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.
    Atkinson CL; Capps KA; Rugenski AT; Vanni MJ
    Biol Rev Camb Philos Soc; 2017 Nov; 92(4):2003-2023. PubMed ID: 28008706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling time-varying phytoplankton subsidy reveals at-risk species in a Chilean intertidal ecosystem.
    Duckwall C; Largier JL; Wieters EA; Valdovinos FS
    Sci Rep; 2024 Mar; 14(1):6995. PubMed ID: 38523196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From winter to summer and back: Lessons from the parameterization of a seasonal food web model for the Białowieża forest.
    Sauve AMC; Barraquand F
    J Anim Ecol; 2020 Jul; 89(7):1628-1644. PubMed ID: 32248533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid trophic markers in the pelagic marine environment.
    Dalsgaard J; St John M; Kattner G; Müller-Navarra D; Hagen W
    Adv Mar Biol; 2003; 46():225-340. PubMed ID: 14601414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning.
    Anaya-Rojas JM; Best RJ; Brunner FS; Eizaguirre C; Leal MC; Melián CJ; Seehausen O; Matthews B
    Ecology; 2019 Aug; 100(8):e02744. PubMed ID: 31135996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities.
    McCauley DJ; Gellner G; Martinez ND; Williams RJ; Sandin SA; Micheli F; Mumby PJ; McCann KS
    Ecol Lett; 2018 Mar; 21(3):439-454. PubMed ID: 29316114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Producer nutritional quality controls ecosystem trophic structure.
    Cebrian J; Shurin JB; Borer ET; Cardinale BJ; Ngai JT; Smith MD; Fagan WF
    PLoS One; 2009; 4(3):e4929. PubMed ID: 19300514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometric constraints modulate temperature and nutrient effects on biomass distribution and community stability.
    Sentis A; Haegeman B; Montoya JM
    Oikos; 2022 Jul; 2022(7):. PubMed ID: 36644620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.