These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36969966)
21. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation. Lee YJ; Qi Y; Zhou G; Lua KB Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701 [TBL] [Abstract][Full Text] [Related]
22. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester. Kang JG; Kim H; Shin S; Kim BS Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153 [TBL] [Abstract][Full Text] [Related]
23. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations. Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122 [TBL] [Abstract][Full Text] [Related]
24. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes. Yu H; Yue Q; Zhou J; Wang W Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054 [TBL] [Abstract][Full Text] [Related]
25. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices. Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429 [TBL] [Abstract][Full Text] [Related]
26. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism. Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221 [TBL] [Abstract][Full Text] [Related]
27. Bandwidth Broadening of Piezoelectric Energy Harvesters Using Arrays of a Proposed Piezoelectric Cantilever Structure. Salem MS; Ahmed S; Shaker A; Alshammari MT; Al-Dhlan KA; Alanazi A; Saeed A; Abouelatta M Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442595 [TBL] [Abstract][Full Text] [Related]
28. Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester. Bouhedma S; Zheng Y; Lange F; Hohlfeld D Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866447 [TBL] [Abstract][Full Text] [Related]
29. Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester. Wang N; Han R; Chen C; Gu J; Li X Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445444 [TBL] [Abstract][Full Text] [Related]
30. Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester. Ju D; Wang L; Li C; Huang H; Liu H; Liu K; Wang Q; Han X; Zhao L; Maeda R Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502195 [TBL] [Abstract][Full Text] [Related]
31. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism. Li N; Xia H; Yang C; Luo T; Qin L Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182 [TBL] [Abstract][Full Text] [Related]
32. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester. Raghavan S; Gupta R; Sharma L Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763945 [TBL] [Abstract][Full Text] [Related]
33. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters. Qaseem Q; Ibrahim A Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241631 [TBL] [Abstract][Full Text] [Related]
34. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester. Zhu Y; Zhang Z; Zhang P; Tan Y Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228 [TBL] [Abstract][Full Text] [Related]
35. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration. Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884 [TBL] [Abstract][Full Text] [Related]
36. System-Level Model and Simulation of a Frequency-Tunable Vibration Energy Harvester. Bouhedma S; Rao Y; Schütz A; Yuan C; Hu S; Lange F; Bechtold T; Hohlfeld D Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31947540 [TBL] [Abstract][Full Text] [Related]
37. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization. Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008 [TBL] [Abstract][Full Text] [Related]
38. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies. Zhao X; Li S; Ai C; Liu H; Wen D Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569 [TBL] [Abstract][Full Text] [Related]
39. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration. Tang Q; Yang Y; Li X Rev Sci Instrum; 2014 Apr; 85(4):045004. PubMed ID: 24784650 [TBL] [Abstract][Full Text] [Related]
40. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Ansari MH; Karami MA Smart Mater Struct; 2017 Jun; 26(6):. PubMed ID: 29674807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]