These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 36970088)

  • 1. Conductive hydrogels for tissue repair.
    Liang Y; Qiao L; Qiao B; Guo B
    Chem Sci; 2023 Mar; 14(12):3091-3116. PubMed ID: 36970088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine.
    Hong Y; Lin Z; Yang Y; Jiang T; Shang J; Luo Z
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroconductive hydrogels for biomedical applications.
    Lu H; Zhang N; Ma M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1568. PubMed ID: 31241253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.
    Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY
    Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior.
    Saeidi M; Chenani H; Orouji M; Adel Rastkhiz M; Bolghanabadi N; Vakili S; Mohamadnia Z; Hatamie A; Simchi AA
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular Matrix-Based Conductive Interpenetrating Network Hydrogels with Enhanced Neurovascular Regeneration Properties for Diabetic Wounds Repair.
    Fan L; Xiao C; Guan P; Zou Y; Wen H; Liu C; Luo Y; Tan G; Wang Q; Li Y; Yu P; Zhou L; Ning C
    Adv Healthc Mater; 2022 Jan; 11(1):e2101556. PubMed ID: 34648694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels.
    Koppes AN; Keating KW; McGregor AL; Koppes RA; Kearns KR; Ziemba AM; McKay CA; Zuidema JM; Rivet CJ; Gilbert RJ; Thompson DM
    Acta Biomater; 2016 Jul; 39():34-43. PubMed ID: 27167609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration.
    Guo B; Qu J; Zhao X; Zhang M
    Acta Biomater; 2019 Jan; 84():180-193. PubMed ID: 30528606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors.
    Peng K; Wang W; Zhang J; Ma Y; Lin L; Gan Q; Chen Y; Feng C
    Carbohydr Polym; 2022 Feb; 278():118927. PubMed ID: 34973745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Strategies of Conductive Hydrogel for Biomedical Applications.
    Xu J; Tsai YL; Hsu SH
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives.
    Rogers ZJ; Zeevi MP; Koppes R; Bencherif SA
    Bioelectricity; 2020 Sep; 2(3):279-292. PubMed ID: 34476358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications.
    Min JH; Patel M; Koh WG
    Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30961003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation.
    Park J; Choi JH; Kim S; Jang I; Jeong S; Lee JY
    Acta Biomater; 2019 Oct; 97():141-153. PubMed ID: 31352108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional hydrogels for the repair and regeneration of tissue defects.
    Li X; Xu M; Geng Z; Liu Y
    Front Bioeng Biotechnol; 2023; 11():1190171. PubMed ID: 37260829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective.
    Gao C; Song S; Lv Y; Huang J; Zhang Z
    Macromol Biosci; 2022 Aug; 22(8):e2200051. PubMed ID: 35472125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods.
    Gan D; Han L; Wang M; Xing W; Xu T; Zhang H; Wang K; Fang L; Lu X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36218-36228. PubMed ID: 30251533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.