These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 36970219)

  • 41. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery.
    Xie N; Liu S; Yang X; He X; Huang J; Wang K
    Analyst; 2017 Sep; 142(18):3322-3332. PubMed ID: 28835943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanostructured DNA for the delivery of therapeutic agents.
    Nishikawa M; Tan M; Liao W; Kusamori K
    Adv Drug Deliv Rev; 2019 Jul; 147():29-36. PubMed ID: 31614168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA nanotechnology-based development of delivery systems for bioactive compounds.
    Mohri K; Nishikawa M; Takahashi Y; Takakura Y
    Eur J Pharm Sci; 2014 Jul; 58():26-33. PubMed ID: 24694593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown.
    Høiberg HC; Sparvath SM; Andersen VL; Kjems J; Andersen ES
    Biotechnol J; 2019 Jan; 14(1):e1700634. PubMed ID: 29802763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release.
    Chen K; Zhang Y; Zhu L; Chu H; Shao X; Asakiya C; Huang K; Xu W
    J Control Release; 2022 Jan; 341():869-891. PubMed ID: 34952045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging.
    Wu Z; Liu GQ; Yang XL; Jiang JH
    J Am Chem Soc; 2015 Jun; 137(21):6829-36. PubMed ID: 25969953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tailoring the Mechanical Stiffness of DNA Nanostructures Using Engineered Defects.
    Lee C; Kim KS; Kim YJ; Lee JY; Kim DN
    ACS Nano; 2019 Jul; 13(7):8329-8336. PubMed ID: 31291091
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation.
    Afonin KA; Dobrovolskaia MA; Ke W; Grodzinski P; Bathe M
    Adv Drug Deliv Rev; 2022 Feb; 181():114081. PubMed ID: 34915069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prospects for using self-assembled nucleic acid structures.
    Rudchenko MN; Zamyatnin AA
    Biochemistry (Mosc); 2015 Apr; 80(4):391-9. PubMed ID: 25869355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging.
    Lee JY; Chung SJ; Cho HJ; Kim DD
    Biomaterials; 2016 Apr; 85():218-31. PubMed ID: 26874284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids.
    Onizuka K; Yamano Y; Abdelhady AM; Nagatsugi F
    Org Biomol Chem; 2022 Jun; 20(23):4699-4708. PubMed ID: 35622064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleic Acid Nanotechnology for Diagnostics and Therapeutics in Acute Kidney Injury.
    Ying Y; Tang Q; Han D; Mou S
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Algorithmic Design of 3D Wireframe RNA Polyhedra.
    Elonen A; Natarajan AK; Kawamata I; Oesinghaus L; Mohammed A; Seitsonen J; Suzuki Y; Simmel FC; Kuzyk A; Orponen P
    ACS Nano; 2022 Oct; 16(10):16608-16616. PubMed ID: 36178116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines.
    Rinoldi C; Zargarian SS; Nakielski P; Li X; Liguori A; Petronella F; Presutti D; Wang Q; Costantini M; De Sio L; Gualandi C; Ding B; Pierini F
    Small Methods; 2021 Sep; 5(9):e2100402. PubMed ID: 34514087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation.
    Li J; Green AA; Yan H; Fan C
    Nat Chem; 2017 Nov; 9(11):1056-1067. PubMed ID: 29064489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanically interlocked DNA nanostructures for functional devices.
    Jester SS; Famulok M
    Acc Chem Res; 2014 Jun; 47(6):1700-9. PubMed ID: 24627986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications.
    Haque F; Pi F; Zhao Z; Gu S; Hu H; Yu H; Guo P
    Wiley Interdiscip Rev RNA; 2018 Jan; 9(1):. PubMed ID: 29105333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of Metal Nanostructures on DNA Templates.
    Li N; Shang Y; Han Z; Wang T; Wang ZG; Ding B
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):13835-13852. PubMed ID: 30480424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.