BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36970416)

  • 1. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials.
    Grasskamp AT; Jusyte M; McCarthy AW; Götz TWB; Ditlevsen S; Walter AM
    Front Cell Neurosci; 2023; 17():1129417. PubMed ID: 36970416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses.
    Liu Y; Sugiura Y; Südhof TC; Lin W
    J Neurosci; 2019 Jul; 39(31):6049-6066. PubMed ID: 31160536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneously Recycling Synaptic Vesicles Constitute Readily Releasable Vesicles in Intact Neuromuscular Synapses.
    Egashira Y; Kumade A; Ojida A; Ono F
    J Neurosci; 2022 Apr; 42(17):3523-3536. PubMed ID: 35332083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evoked and spontaneous transmission favored by distinct sets of synapses.
    Peled ES; Newman ZL; Isacoff EY
    Curr Biol; 2014 Mar; 24(5):484-93. PubMed ID: 24560571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VAMP4 Maintains a Ca
    Lin PY; Chanaday NL; Horvath PM; Ramirez DMO; Monteggia LM; Kavalali ET
    J Neurosci; 2020 Jul; 40(28):5389-5401. PubMed ID: 32532887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission.
    Stawarski M; Hernandez RX; Feghhi T; Borycz JA; Lu Z; Agarwal AB; Reihl KD; Tavora R; Lau AWC; Meinertzhagen IA; Renden R; Macleod GT
    J Neurosci; 2020 Feb; 40(8):1611-1624. PubMed ID: 31964719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
    Hong H; Zhao K; Huang S; Huang S; Yao A; Jiang Y; Sigrist S; Zhao L; Zhang YQ
    J Neurosci; 2020 Apr; 40(14):2817-2827. PubMed ID: 32122953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the
    Wang Y; Lobb-Rabe M; Ashley J; Anand V; Carrillo RA
    J Neurosci; 2021 Feb; 41(7):1401-1417. PubMed ID: 33402422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic excitation is regulated by the postsynaptic dSK channel at the Drosophila larval NMJ.
    Gertner DM; Desai S; Lnenicka GA
    J Neurophysiol; 2014 Jun; 111(12):2533-43. PubMed ID: 24671529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals.
    Ramachandran S; Rodgriguez S; Potcoava M; Alford S
    J Neurosci; 2022 Mar; 42(12):2385-2403. PubMed ID: 35063999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and evoked release are independently regulated at individual active zones.
    Melom JE; Akbergenova Y; Gavornik JP; Littleton JT
    J Neurosci; 2013 Oct; 33(44):17253-63. PubMed ID: 24174659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Kinase C Enhances Electrical Synaptic Transmission by Acting on Junctional and Postsynaptic Ca
    Beekharry CC; Gu Y; Magoski NS
    J Neurosci; 2018 Mar; 38(11):2796-2808. PubMed ID: 29440551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission.
    Chung C; Raingo J
    J Neurochem; 2013 Jul; 126(2):146-54. PubMed ID: 23517499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct Actions of Voltage-Activated Ca
    Tsintsadze T; Williams CL; Weingarten DJ; von Gersdorff H; Smith SM
    J Neurosci; 2017 Apr; 37(16):4301-4310. PubMed ID: 28320843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms and functions of spontaneous neurotransmitter release.
    Kavalali ET
    Nat Rev Neurosci; 2015 Jan; 16(1):5-16. PubMed ID: 25524119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission.
    Sabeva N; Cho RW; Vasin A; Gonzalez A; Littleton JT; Bykhovskaia M
    J Neurosci; 2017 Jan; 37(2):383-396. PubMed ID: 28077717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of presynaptic Ca
    Krick N; Ryglewski S; Pichler A; Bikbaev A; Götz T; Kobler O; Heine M; Thomas U; Duch C
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34244444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.
    Clarke SG; Scarnati MS; Paradiso KG
    J Neurosci; 2016 Nov; 36(45):11559-11572. PubMed ID: 27911759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Doc2-Dependent Spontaneous Neurotransmission Augments Glutamatergic Synaptic Strength.
    Ramirez DMO; Crawford DC; Chanaday NL; Trauterman B; Monteggia LM; Kavalali ET
    J Neurosci; 2017 Jun; 37(26):6224-6230. PubMed ID: 28539418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.