BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 36970452)

  • 21. A multilevel electrolyte-gated artificial synapse based on ruthenium-doped cobalt ferrite.
    Monalisha P; Li S; Jin T; Kumar PSA; Piramanayagam SN
    Nanotechnology; 2023 Feb; 34(16):. PubMed ID: 36645906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review.
    Bag SP; Lee S; Song J; Kim J
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Linear and Symmetric Synaptic Memtransistors Based on Polarization Switching in Two-Dimensional Ferroelectric Semiconductors.
    Chen Y; Li D; Ren H; Tang Y; Liang K; Wang Y; Li F; Song C; Guan J; Chen Z; Lu X; Xu G; Li W; Liu S; Zhu B
    Small; 2022 Nov; 18(45):e2203611. PubMed ID: 36156393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Synapse Based on a 2D-SnO
    Huang CH; Chang H; Yang TY; Wang YC; Chueh YL; Nomura K
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52822-52832. PubMed ID: 34714053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing.
    Liu X; Sun C; Guo Z; Zhang Y; Zhang Z; Shang J; Zhong Z; Zhu X; Yu X; Li RW
    Nanoscale Adv; 2022 May; 4(11):2412-2419. PubMed ID: 36134138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors.
    Shim H; Jang S; Thukral A; Jeong S; Jo H; Kan B; Patel S; Wei G; Lan W; Kim HJ; Yu C
    Proc Natl Acad Sci U S A; 2022 Jun; 119(23):e2204852119. PubMed ID: 35648822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalent Organic Frameworks for Neuromorphic Devices.
    Zhou K; Jia Z; Zhou Y; Ding G; Ma XQ; Niu W; Han ST; Zhao J; Zhou Y
    J Phys Chem Lett; 2023 Aug; 14(32):7173-7192. PubMed ID: 37540588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications.
    Li C; Xiong T; Yu P; Fei J; Mao L
    ACS Appl Bio Mater; 2021 Jan; 4(1):71-84. PubMed ID: 35014277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polysilicon-Channel Synaptic Transistors for Implementation of Short- and Long-Term Memory Characteristics.
    Baek MH; Kim H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.
    Tang J; Yuan F; Shen X; Wang Z; Rao M; He Y; Sun Y; Li X; Zhang W; Li Y; Gao B; Qian H; Bi G; Song S; Yang JJ; Wu H
    Adv Mater; 2019 Dec; 31(49):e1902761. PubMed ID: 31550405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes.
    Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J
    Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing.
    Monalisha P; Kumar APS; Wang XR; Piramanayagam SN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution-processed electronics for artificial synapses.
    Lu K; Li X; Sun Q; Pang X; Chen J; Minari T; Liu X; Song Y
    Mater Horiz; 2021 Feb; 8(2):447-470. PubMed ID: 34821264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterosynaptic MoS
    Huh W; Lee D; Jang S; Kang JH; Yoon TH; So JP; Kim YH; Kim JC; Park HG; Jeong HY; Wang G; Lee CH
    Adv Mater; 2023 Jun; 35(24):e2211525. PubMed ID: 36930856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Model of the Short-Term Synaptic Behaviors of PEDOT-based Organic Electrochemical Transistors with Modified Shockley Equations.
    Shu H; Long H; Sun H; Li B; Zhang H; Wang X
    ACS Omega; 2022 May; 7(17):14622-14629. PubMed ID: 35557652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured perovskites for nonvolatile memory devices.
    Liu Q; Gao S; Xu L; Yue W; Zhang C; Kan H; Li Y; Shen G
    Chem Soc Rev; 2022 May; 51(9):3341-3379. PubMed ID: 35293907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environment-Adaptable Artificial Visual Perception Behaviors Using a Light-Adjustable Optoelectronic Neuromorphic Device Array.
    Kwon SM; Cho SW; Kim M; Heo JS; Kim YH; Park SK
    Adv Mater; 2019 Dec; 31(52):e1906433. PubMed ID: 31725185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.