These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 36970452)

  • 41. Ferroelectric Transistors for Memory and Neuromorphic Device Applications.
    Kim IJ; Lee JS
    Adv Mater; 2023 Jun; 35(22):e2206864. PubMed ID: 36484488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible Artificial Synapses with a Biocompatible Maltose-Ascorbic Acid Electrolyte Gate for Neuromorphic Computing.
    Qin W; Kang BH; Kim HJ
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34597-34604. PubMed ID: 34279076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resistive Memory Devices at the Thinnest Limit: Progress and Challenges.
    Li XD; Chen NK; Wang BQ; Niu M; Xu M; Miao X; Li XB
    Adv Mater; 2024 Apr; 36(15):e2307951. PubMed ID: 38197585
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent progress of fiber-based transistors: materials, structures and applications.
    Zhang H; Wang Z; Wang Z; He B; Chen M; Qi M; Liu Y; Xin J; Wei L
    Front Optoelectron; 2022 Mar; 15(1):2. PubMed ID: 36637572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emerging memristive artificial neuron and synapse devices for the neuromorphic electronics era.
    Li J; Abbas H; Ang DS; Ali A; Ju X
    Nanoscale Horiz; 2023 Oct; 8(11):1456-1484. PubMed ID: 37615055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconfigurable 2D WSe
    Ding G; Yang B; Chen RS; Mo WA; Zhou K; Liu Y; Shang G; Zhai Y; Han ST; Zhou Y
    Small; 2021 Oct; 17(41):e2103175. PubMed ID: 34528382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems.
    Lu Q; Zhao Y; Huang L; An J; Zheng Y; Yap EH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Versatile memristor for memory and neuromorphic computing.
    Guo T; Pan K; Jiao Y; Sun B; Du C; Mills JP; Chen Z; Zhao X; Wei L; Zhou YN; Wu YA
    Nanoscale Horiz; 2022 Feb; 7(3):299-310. PubMed ID: 35064257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.
    Qian C; Sun J; Kong LA; Gou G; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26169-26175. PubMed ID: 27608136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Multiwavelength Response of Flexible Synaptic Transistors for Human Sunburned Skin Simulation and Neuromorphic Computation.
    Wang X; Yang S; Qin Z; Hu B; Bu L; Lu G
    Adv Mater; 2023 Oct; 35(40):e2303699. PubMed ID: 37358823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A newly developed transparent and flexible one-transistor memory device using advanced nanomaterials for medical and artificial intelligence applications.
    Dai M; Hu Y; Huo C; Webster TJ; Guo L
    Int J Nanomedicine; 2019; 14():5691-5696. PubMed ID: 31413569
    [No Abstract]   [Full Text] [Related]  

  • 56. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications.
    Liu X; Sun C; Ye X; Zhu X; Hu C; Tan H; He S; Shao M; Li RW
    Adv Mater; 2024 Feb; ():e2311472. PubMed ID: 38421081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increasing the stability of electrolyte-gated organic synaptic transistors for neuromorphic implants.
    Lee SW; Kim S; Kim KN; Sung MJ; Lee TW
    Biosens Bioelectron; 2024 Oct; 261():116444. PubMed ID: 38850740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution-Processed Perovskite Field-Effect Transistor Artificial Synapses.
    Jeong B; Gkoupidenis P; Asadi K
    Adv Mater; 2021 Dec; 33(52):e2104034. PubMed ID: 34609764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors.
    Luo ZD; Xia X; Yang MM; Wilson NR; Gruverman A; Alexe M
    ACS Nano; 2020 Jan; 14(1):746-754. PubMed ID: 31887010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors.
    Dang B; Wu Q; Song F; Sun J; Yang M; Ma X; Wang H; Hao Y
    Nanoscale; 2018 Nov; 10(43):20089-20095. PubMed ID: 30357252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.