These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 36970555)

  • 41. Single-cell droplet microfluidics for biomedical applications.
    Liu D; Sun M; Zhang J; Hu R; Fu W; Xuanyuan T; Liu W
    Analyst; 2022 May; 147(11):2294-2316. PubMed ID: 35506869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns.
    Lei W; Lu X; Wang M
    Adv Colloid Interface Sci; 2023 Jan; 311():102826. PubMed ID: 36528919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measuring cell deformation by microfluidics.
    An L; Ji F; Zhao E; Liu Y; Liu Y
    Front Bioeng Biotechnol; 2023; 11():1214544. PubMed ID: 37434754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in microfluidic cell culture systems for studying angiogenesis.
    Young EW
    J Lab Autom; 2013 Dec; 18(6):427-36. PubMed ID: 23832929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidics: Insights into Intestinal Microorganisms.
    Qi P; Lv J; Yan X; Bai L; Zhang L
    Microorganisms; 2023 Apr; 11(5):. PubMed ID: 37317109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multifunctional microfluidic chip for cancer diagnosis and treatment.
    Guo QR; Zhang LL; Liu JF; Li Z; Li JJ; Zhou WM; Wang H; Li JQ; Liu DY; Yu XY; Zhang JY
    Nanotheranostics; 2021; 5(1):73-89. PubMed ID: 33391976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optoelectrokinetics-based microfluidic platform for bioapplications: A review of recent advances.
    Liang W; Liu L; Zhang H; Wang Y; Li WJ
    Biomicrofluidics; 2019 Sep; 13(5):051502. PubMed ID: 31558919
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Droplet-based microfluidics in biomedical applications.
    Amirifar L; Besanjideh M; Nasiri R; Shamloo A; Nasrollahi F; de Barros NR; Davoodi E; Erdem A; Mahmoodi M; Hosseini V; Montazerian H; Jahangiry J; Darabi MA; Haghniaz R; Dokmeci MR; Annabi N; Ahadian S; Khademhosseini A
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34781274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pressure-driven microfluidic perfusion culture device for integrated dose-response assays.
    Hattori K; Sugiura S; Kanamori T
    J Lab Autom; 2013 Dec; 18(6):437-45. PubMed ID: 24014544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micro-optics for microfluidic analytical applications.
    Yang H; Gijs MAM
    Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.
    Offeddu GS; Serrano JC; Chen SW; Shelton SE; Shin Y; Floryan M; Kamm RD
    J Biomech; 2021 Apr; 119():110330. PubMed ID: 33631662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Droplet Incubation and Splitting in Open Microfluidic Channels.
    Berry SB; Lee JJ; Berthier J; Berthier E; Theberge AB
    Anal Methods; 2019 Sep; 11(35):4528-4536. PubMed ID: 32528558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BioMEMS and cellular biology: perspectives and applications.
    Folch A
    J Vis Exp; 2007; (8):300. PubMed ID: 18989409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Opportunities involving microfluidics and 3D culture systems to the
    Ferraz MAMM; Ferronato GA
    Anim Reprod; 2023; 20(2):e20230058. PubMed ID: 37638255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.