These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 36970555)

  • 61. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microfluidic systems for modeling human development.
    Bonner MG; Gudapati H; Mou X; Musah S
    Development; 2022 Feb; 149(3):. PubMed ID: 35156682
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium.
    Nan L; Yang Z; Lyu H; Lau KYY; Shum HC
    Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter.
    Wolff A; Perch-Nielsen IR; Larsen UD; Friis P; Goranovic G; Poulsen CR; Kutter JP; Telleman P
    Lab Chip; 2003 Feb; 3(1):22-7. PubMed ID: 15100801
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays.
    Huang SB; Wang SS; Hsieh CH; Lin YC; Lai CS; Wu MH
    Lab Chip; 2013 Mar; 13(6):1133-43. PubMed ID: 23353927
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Recent advances in microchip liquid chromatography].
    Wen H; Zhu J; Zhang B
    Se Pu; 2021 Apr; 39(4):357-367. PubMed ID: 34227755
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recent advances in droplet microfluidics for enzyme and cell factory engineering.
    Yang J; Tu R; Yuan H; Wang Q; Zhu L
    Crit Rev Biotechnol; 2021 Nov; 41(7):1023-1045. PubMed ID: 33730939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microfabricated devices for biomolecule encapsulation.
    Desmarais SM; Haagsman HP; Barron AE
    Electrophoresis; 2012 Sep; 33(17):2639-49. PubMed ID: 22965707
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microsystem Advances through Integration with Artificial Intelligence.
    Tsai HF; Podder S; Chen PY
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421059
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Advances in Microfluidics Applied to Single Cell Operation.
    Zhu XD; Chu J; Wang YH
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29220116
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microfluidic Devices for Drug Delivery Systems and Drug Screening.
    Damiati S; Kompella UB; Damiati SA; Kodzius R
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29462948
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidics for cell factory and bioprocess development.
    Bjork SM; Joensson HN
    Curr Opin Biotechnol; 2019 Feb; 55():95-102. PubMed ID: 30236890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.