These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36970657)

  • 1. CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning.
    Diekmann N; Vijayabaskaran S; Zeng X; Kappel D; Menezes MC; Cheng S
    Front Neuroinform; 2023; 17():1134405. PubMed ID: 36970657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python.
    Hazan H; Saunders DJ; Khan H; Patel D; Sanghavi DT; Siegelmann HT; Kozma R
    Front Neuroinform; 2018; 12():89. PubMed ID: 30631269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Closed-Loop Toolchain for Neural Network Simulations of Learning Autonomous Agents.
    Jordan J; Weidel P; Morrison A
    Front Comput Neurosci; 2019; 13():46. PubMed ID: 31427939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grid cells, place cells, and geodesic generalization for spatial reinforcement learning.
    Gustafson NJ; Daw ND
    PLoS Comput Biol; 2011 Oct; 7(10):e1002235. PubMed ID: 22046115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformer-RL: A deep reinforcement learning library for conformer generation.
    Jiang R; Gogineni T; Kammeraad J; He Y; Tewari A; Zimmerman PM
    J Comput Chem; 2022 Oct; 43(27):1880-1886. PubMed ID: 36000759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis.
    Stoianov IP; Pennartz CMA; Lansink CS; Pezzulo G
    PLoS Comput Biol; 2018 Sep; 14(9):e1006316. PubMed ID: 30222746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations.
    Schegg P; Ménager E; Khairallah E; Marchal D; Dequidt J; Preux P; Duriez C
    Soft Robot; 2023 Apr; 10(2):410-430. PubMed ID: 36476150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep reinforcement learning to study spatial navigation, learning and memory in artificial and biological agents.
    Bermudez-Contreras E
    Biol Cybern; 2021 Apr; 115(2):131-134. PubMed ID: 33564968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Reinforcement Learning and Its Connections with Brain Neuroscience.
    Fan C; Yao L; Zhang J; Zhen Z; Wu X
    Research (Wash D C); 2023; 6():0064. PubMed ID: 36939448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning.
    Hrinivich WT; Lee J
    Med Phys; 2020 Dec; 47(12):6140-6150. PubMed ID: 33070336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning application in diabetes blood glucose control: A systematic review.
    Tejedor M; Woldaregay AZ; Godtliebsen F
    Artif Intell Med; 2020 Apr; 104():101836. PubMed ID: 32499004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SANgo: a storage infrastructure simulator with reinforcement learning support.
    Arzymatov K; Sapronov A; Belavin V; Gremyachikh L; Karpov M; Ustyuzhanin A; Tchoub I; Ikoev A
    PeerJ Comput Sci; 2020; 6():e271. PubMed ID: 33816922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.