These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36970759)
1. Modulating and optimizing Pluronic F-68 concentrations and feeding for intensified perfusion Chinese hamster ovary cell cultures. Wei Z; Xia Y; Su Y; Quan Y; Sun L; Wang S; Zhu F; Chen Z; Tian J; Wang WC; Zhou W; Yu H Biotechnol Prog; 2023; 39(4):e3340. PubMed ID: 36970759 [TBL] [Abstract][Full Text] [Related]
2. Impact of Pluronic Xu S; Jiang R; Chen Y; Wang F; Chen H Bioprocess Biosyst Eng; 2017 Sep; 40(9):1317-1326. PubMed ID: 28577048 [TBL] [Abstract][Full Text] [Related]
3. Optimized process operations reduce product retention and column clogging in ATF-based perfusion cell cultures. Su Y; Wei Z; Miao Y; Sun L; Shen Y; Tang Z; Li L; Quan Y; Yu H; Wang WC; Zhou W; Tian J Appl Microbiol Biotechnol; 2021 Dec; 105(24):9125-9136. PubMed ID: 34811605 [TBL] [Abstract][Full Text] [Related]
4. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: Applications for antibody production and cryopreservation. Clincke MF; Mölleryd C; Samani PK; Lindskog E; Fäldt E; Walsh K; Chotteau V Biotechnol Prog; 2013; 29(3):768-77. PubMed ID: 23436783 [TBL] [Abstract][Full Text] [Related]
5. Optimization of medium with perfusion microbioreactors for high density CHO cell cultures at very low renewal rate aided by design of experiments. Schwarz H; Lee K; Castan A; Chotteau V Biotechnol Bioeng; 2023 Sep; 120(9):2523-2541. PubMed ID: 37079436 [TBL] [Abstract][Full Text] [Related]
6. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Clincke MF; Mölleryd C; Zhang Y; Lindskog E; Walsh K; Chotteau V Biotechnol Prog; 2013; 29(3):754-67. PubMed ID: 23436789 [TBL] [Abstract][Full Text] [Related]
7. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Särnlund S; Jiang Y; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903 [TBL] [Abstract][Full Text] [Related]
8. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor. Zhang Y; Stobbe P; Silvander CO; Chotteau V J Biotechnol; 2015 Nov; 213():28-41. PubMed ID: 26211737 [TBL] [Abstract][Full Text] [Related]
9. Developing an ultra-intensified fed-batch cell culture process with greatly improved performance and productivity. Xiang S; Zhang J; Yu L; Tian J; Tang W; Tang H; Xu K; Wang X; Cui Y; Ren K; Cao W; Su Y; Zhou W Biotechnol Bioeng; 2024 Feb; 121(2):696-709. PubMed ID: 37994547 [TBL] [Abstract][Full Text] [Related]
10. Contributions of Chinese hamster ovary cell derived extracellular vesicles and other cellular materials to hollow fiber filter fouling during perfusion manufacturing of monoclonal antibodies. Zhang Y; Madabhushi S; Tang T; Raza H; Busch DJ; Zhao X; Ormes J; Xu S; Moroney J; Jiang R; Lin H; Liu R Biotechnol Bioeng; 2024 May; 121(5):1674-1687. PubMed ID: 38372655 [TBL] [Abstract][Full Text] [Related]
11. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. Yongky A; Xu J; Tian J; Oliveira C; Zhao J; McFarland K; Borys MC; Li ZJ MAbs; 2019; 11(8):1502-1514. PubMed ID: 31379298 [TBL] [Abstract][Full Text] [Related]
12. Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin. Schwarz H; Zhang Y; Zhan C; Malm M; Field R; Turner R; Sellick C; Varley P; Rockberg J; Chotteau V J Biotechnol; 2020 Feb; 309():44-52. PubMed ID: 31891733 [TBL] [Abstract][Full Text] [Related]
13. The fate of Pluronic F-68 in chondrocytes and CHO cells. Gigout A; Buschmann MD; Jolicoeur M Biotechnol Bioeng; 2008 Aug; 100(5):975-87. PubMed ID: 18393312 [TBL] [Abstract][Full Text] [Related]
14. Use of scanning electron microscopy and energy dispersive X-ray spectroscopy to identify key fouling species during alternating tangential filtration. Sundar V; Zhang D; Qian X; Wickramasinghe SR; Smelko JP; Carbrello C; Jabbour Al Maalouf Y; Zydney AL Biotechnol Prog; 2023; 39(3):e3336. PubMed ID: 36825399 [TBL] [Abstract][Full Text] [Related]
15. WAVE-based intensified perfusion cell culture for fast process development. Lang Z; Yan S; Xiong Q; Chen G Biotechnol Lett; 2023 Sep; 45(9):1117-1131. PubMed ID: 37382759 [TBL] [Abstract][Full Text] [Related]
16. A high-titer scalable Chinese hamster ovary transient expression platform for production of biotherapeutics. Gonzalez-Rivera JC; Galvan A; Ryder T; Milman M; Agarwal K; Kandari L; Khetan A Biotechnol Bioeng; 2024 Nov; 121(11):3454-3470. PubMed ID: 39101569 [TBL] [Abstract][Full Text] [Related]
17. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. Xu S; Chen H J Biotechnol; 2016 Aug; 231():149-159. PubMed ID: 27320019 [TBL] [Abstract][Full Text] [Related]
18. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Xu S; Gavin J; Jiang R; Chen H Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910 [TBL] [Abstract][Full Text] [Related]
19. Poly-γ-glutamic acid enhances the growth and viability of Chinese hamster ovary cells in serum-free medium. Chun BH; Lee YK; Chung N Biotechnol Lett; 2012 Oct; 34(10):1807-10. PubMed ID: 22714280 [TBL] [Abstract][Full Text] [Related]
20. Miniature auto-perfusion bioreactor system with spiral microfluidic cell retention device. Yin L; Au WY; Yu CC; Kwon T; Lai Z; Shang M; Warkiani ME; Rosche R; Lim CT; Han J Biotechnol Bioeng; 2021 May; 118(5):1951-1961. PubMed ID: 33559879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]