These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36970770)

  • 1. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
    Islam MS; Chen X
    Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays.
    Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R
    J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAIF: Label-Free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing Microfluidic Chip.
    Abdulla A; Ding X
    Methods Mol Biol; 2023; 2679():207-218. PubMed ID: 37300618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions.
    Uddin MR; Chen X
    Biotechnol Prog; 2024; 40(3):e3437. PubMed ID: 38289677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation.
    Rahmati M; Chen X
    Biomed Microdevices; 2021 Sep; 23(4):49. PubMed ID: 34581876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
    Aghaamoo M; Aghilinejad A; Chen X; Xu J
    Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells.
    Cai J; Chen B; He M; Yuan G; Hu B
    Anal Chem; 2024 Sep; 96(35):14222-14229. PubMed ID: 39159467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles.
    Farahinia A; Khani M; Morhart TA; Wells G; Badea I; Wilson LD; Zhang W
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis.
    Çağlayan Arslan Z; Demircan Yalçın Y; Külah H
    Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells.
    Lin E; Rivera-Báez L; Fouladdel S; Yoon HJ; Guthrie S; Wieger J; Deol Y; Keller E; Sahai V; Simeone DM; Burness ML; Azizi E; Wicha MS; Nagrath S
    Cell Syst; 2017 Sep; 5(3):295-304.e4. PubMed ID: 28941584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip.
    Abdulla A; Zhang T; Ahmad KZ; Li S; Lou J; Ding X
    Anal Chem; 2020 Dec; 92(24):16170-16179. PubMed ID: 33232155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells.
    Lee Y; Guan G; Bhagat AA
    Cytometry A; 2018 Dec; 93(12):1251-1254. PubMed ID: 30080307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.