These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36970818)
1. On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions. Bandeira AS; Maillard A; Nickl R; Wang S Philos Trans A Math Phys Eng Sci; 2023 May; 381(2247):20220150. PubMed ID: 36970818 [TBL] [Abstract][Full Text] [Related]
2. de Finetti Priors using Markov chain Monte Carlo computations. Bacallado S; Diaconis P; Holmes S Stat Comput; 2015 Jul; 25(4):797-808. PubMed ID: 26412947 [TBL] [Abstract][Full Text] [Related]
3. A general construction for parallelizing Metropolis-Hastings algorithms. Calderhead B Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17408-13. PubMed ID: 25422442 [TBL] [Abstract][Full Text] [Related]
4. Fast Bayesian whole-brain fMRI analysis with spatial 3D priors. Sidén P; Eklund A; Bolin D; Villani M Neuroimage; 2017 Feb; 146():211-225. PubMed ID: 27876654 [TBL] [Abstract][Full Text] [Related]
5. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP; Waterfall JJ; Gutenkunst RN; Myers CR; Sethna JP Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046704. PubMed ID: 18999558 [TBL] [Abstract][Full Text] [Related]
6. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants. Liang F; Jin IH Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562 [TBL] [Abstract][Full Text] [Related]
7. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z; Rodríguez CE Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19307-12. PubMed ID: 24218600 [TBL] [Abstract][Full Text] [Related]
8. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data. Saraiva EF; Suzuki AK; Milan LA Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265731 [TBL] [Abstract][Full Text] [Related]
9. Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Ahmadian Y; Pillow JW; Paninski L Neural Comput; 2011 Jan; 23(1):46-96. PubMed ID: 20964539 [TBL] [Abstract][Full Text] [Related]
10. Laplacian-P-splines for Bayesian inference in the mixture cure model. Gressani O; Faes C; Hens N Stat Med; 2022 Jun; 41(14):2602-2626. PubMed ID: 35699121 [TBL] [Abstract][Full Text] [Related]
12. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo. Zhu Y Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628264 [TBL] [Abstract][Full Text] [Related]
13. Applying diffusion-based Markov chain Monte Carlo. Herbei R; Paul R; Berliner LM PLoS One; 2017; 12(3):e0173453. PubMed ID: 28301529 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. Ballnus B; Hug S; Hatz K; Görlitz L; Hasenauer J; Theis FJ BMC Syst Biol; 2017 Jun; 11(1):63. PubMed ID: 28646868 [TBL] [Abstract][Full Text] [Related]
15. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data. Liang F; Kim J; Song Q Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469 [TBL] [Abstract][Full Text] [Related]
16. A New Bayesian Single Index Model with or without Covariates Missing at Random. Dhara K; Lipsitz S; Pati D; Sinha D Bayesian Anal; 2020 Sep; 15(3):759-780. PubMed ID: 33692872 [TBL] [Abstract][Full Text] [Related]
17. An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension. Marnissi Y; Chouzenoux E; Benazza-Benyahia A; Pesquet JC Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265201 [TBL] [Abstract][Full Text] [Related]
18. A review of the Bayesian approach with the MCMC and the HMC as a competitor of classical likelihood statistics for pharmacometricians. Choi K Transl Clin Pharmacol; 2023 Jun; 31(2):69-84. PubMed ID: 37440780 [TBL] [Abstract][Full Text] [Related]
19. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078 [TBL] [Abstract][Full Text] [Related]
20. A simple introduction to Markov Chain Monte-Carlo sampling. van Ravenzwaaij D; Cassey P; Brown SD Psychon Bull Rev; 2018 Feb; 25(1):143-154. PubMed ID: 26968853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]