These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36970847)

  • 1. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes.
    Robinson SG; Yan Y; Hendriks KH; Sanford MS; Sigman MS
    J Am Chem Soc; 2019 Jul; 141(26):10171-10176. PubMed ID: 31203608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques.
    Modak SV; Shen W; Singh S; Herrera D; Oudeif F; Goldsmith BR; Huan X; Kwabi DG
    Nat Commun; 2023 Jun; 14(1):3602. PubMed ID: 37328467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance.
    Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J
    RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.
    Hwang B; Park MS; Kim K
    ChemSusChem; 2015 Jan; 8(2):310-4. PubMed ID: 25428116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries.
    Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM
    Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a BODIPY Dye as an Active Species for Redox Flow Batteries.
    Kosswattaarachchi AM; Friedman AE; Cook TR
    ChemSusChem; 2016 Dec; 9(23):3317-3323. PubMed ID: 27863048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.
    Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A
    ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous Redox Flow Batteries: Small Organic Molecules for the Positive Electrolyte Species.
    Cannon CG; Klusener PAA; Brandon NP; Kucernak ARJ
    ChemSusChem; 2023 Sep; 16(18):e202300303. PubMed ID: 37205628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic synthesis of lignin anthraquinone electrolytes for aqueous redox flow batteries.
    Jiao L; Sun M; Yang J; Yang W; Dai H
    Int J Biol Macromol; 2023 Feb; 229():236-246. PubMed ID: 36572085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries.
    Tracy JS; Broderick CH; Toste FD
    J Am Chem Soc; 2024 May; 146(17):11740-11755. PubMed ID: 38629752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.
    Milton M; Cheng Q; Yang Y; Nuckolls C; Hernández Sánchez R; Sisto TJ
    Nano Lett; 2017 Dec; 17(12):7859-7863. PubMed ID: 29125302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled
    Zhao EW; Jónsson E; Jethwa RB; Hey D; Lyu D; Brookfield A; Klusener PAA; Collison D; Grey CP
    J Am Chem Soc; 2021 Feb; 143(4):1885-1895. PubMed ID: 33475344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Six-electron organic redoxmers for aqueous redox flow batteries.
    Fang X; Cavazos AT; Li Z; Li C; Xie J; Wassall SR; Zhang L; Wei X
    Chem Commun (Camb); 2022 Nov; 58(95):13226-13229. PubMed ID: 36354121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.