BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36971372)

  • 1. An end-to-end pipeline based on open source deep learning tools for reliable analysis of complex 3D images of ovaries.
    Lesage M; Thomas M; Pécot T; Ly TK; Hinfray N; Beaudouin R; Neumann M; Lovell-Badge R; Bugeon J; Thermes V
    Development; 2023 Apr; 150(7):. PubMed ID: 36971372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C; Wang T; Michaelos M; Pachitariu M
    Nat Methods; 2021 Jan; 18(1):100-106. PubMed ID: 33318659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-ECi: a CUBIC-ECi combined clearing method for three-dimensional follicular content analysis in the fish ovary†.
    Lesage M; Thomas M; Bugeon J; Branthonne A; Gay S; Cardona E; Haghebaert M; Mahé F; Bobe J; Thermes V
    Biol Reprod; 2020 Oct; 103(5):1099-1109. PubMed ID: 32776144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OoCount: A Machine-Learning Based Approach to Mouse Ovarian Follicle Counting and Classification.
    Folts L; Martinez AS; Bunce C; Capel B; McKey J
    bioRxiv; 2024 May; ():. PubMed ID: 38798456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets.
    Kar A; Petit M; Refahi Y; Cerutti G; Godin C; Traas J
    PLoS Comput Biol; 2022 Apr; 18(4):e1009879. PubMed ID: 35421081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.
    Kleinberg G; Wang S; Comellas E; Monaghan JR; Shefelbine SJ
    Cells Dev; 2022 Dec; 172():203806. PubMed ID: 36029974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D whole brain segmentation using spatially localized atlas network tiles.
    Huo Y; Xu Z; Xiong Y; Aboud K; Parvathaneni P; Bao S; Bermudez C; Resnick SM; Cutting LE; Landman BA
    Neuroimage; 2019 Jul; 194():105-119. PubMed ID: 30910724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking.
    Bruch R; Keller F; Böhland M; Vitacolonna M; Klinger L; Rudolf R; Reischl M
    PLoS One; 2023; 18(3):e0283828. PubMed ID: 37000778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge.
    Song Y; Ren S; Lu Y; Fu X; Wong KKL
    Comput Methods Programs Biomed; 2022 Jun; 220():106821. PubMed ID: 35487181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tools to analyze the organization and formation of the germline cyst in zebrafish oogenesis.
    Kumar V; Elkouby YM
    Development; 2023 Jul; 150(13):. PubMed ID: 37272421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dynamic and expandable digital 3D-atlas maker for monitoring the temporal changes in tissue growth during hindbrain morphogenesis.
    Blanc M; Dalmasso G; Udina F; Pujades C
    Elife; 2022 Sep; 11():. PubMed ID: 36169400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GIANI - open-source software for automated analysis of 3D microscopy images.
    Barry DJ; Gerri C; Bell DM; D'Antuono R; Niakan KK
    J Cell Sci; 2022 May; 135(10):. PubMed ID: 35502739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.
    Jelli E; Ohmura T; Netter N; Abt M; Jiménez-Siebert E; Neuhaus K; Rode DKH; Nadell CD; Drescher K
    Mol Microbiol; 2023 Jun; 119(6):659-676. PubMed ID: 37066636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning based Quantification of Ovary and Follicles using 3D Transvaginal Ultrasound in Assisted Reproduction.
    Mathur P; Kakwani K; Diplav ; Kudavelly S; Ga R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2109-2112. PubMed ID: 33018422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain.
    Shen DD; Bao SL; Wang Y; Chen YC; Zhang YC; Li XC; Ding YC; Jia ZZ
    Pediatr Radiol; 2023 Jul; 53(8):1685-1697. PubMed ID: 36884052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.