BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36971451)

  • 1. Disruption of the Blood-Spinal Cord Barrier using Low-Intensity Focused Ultrasound in a Rat Model.
    Bhimreddy M; Routkevitch D; Hersh AM; Mohammadabadi A; Menta AK; Jiang K; Weber-Levine C; Davidar AD; Punnoose J; Kempski Leadingham KM; Doloff JC; Tyler B; Theodore N; Manbachi A
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36971451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Quantification of blood-spinal cord barrier permeability after application of magnetic resonance-guided focused ultrasound in spinal cord injury.
    Cross CG; Payne AH; Hawryluk GW; Haag-Roeger R; Cheeniyil R; Brady D; Odéen H; Minoshima S; Cross DJ; Anzai Y
    Med Phys; 2021 Aug; 48(8):4395-4401. PubMed ID: 33999427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety Review of Therapeutic Ultrasound for Spinal Cord Neuromodulation and Blood-Spinal Cord Barrier Opening.
    Xu R; Treeby BE; Martin E
    Ultrasound Med Biol; 2024 Mar; 50(3):317-331. PubMed ID: 38182491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-Induced Blood-Spinal Cord Barrier Opening in Rabbits.
    Montero AS; Bielle F; Goldwirt L; Lalot A; Bouchoux G; Canney M; Belin F; Beccaria K; Pradat PF; Salachas F; Boillée S; Lobsiger C; Lafon C; Chapelon JY; Carpentier A
    Ultrasound Med Biol; 2019 Sep; 45(9):2417-2426. PubMed ID: 31248640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury.
    Zhou R; Li J; Chen Z; Wang R; Shen Y; Zhang R; Zhou F; Zhang Y
    J Neuroinflammation; 2023 May; 20(1):118. PubMed ID: 37210532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury.
    Xin W; Baokun Z; Zhiheng C; Qiang S; Erzhu Y; Jianguang X; Xiaofeng L
    Acta Biomater; 2023 Mar; 159():140-155. PubMed ID: 36736849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the blood-spinal cord barrier in preclinical models: a systematic review of in vivo imaging techniques.
    Bakhsheshian J; Strickland BA; Mack WJ; Zlokovic BV
    Spinal Cord; 2021 Jun; 59(6):596-612. PubMed ID: 33742118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters.
    Shin J; Kong C; Cho JS; Lee J; Koh CS; Yoon MS; Na YC; Chang WS; Chang JW
    Neurosurg Focus; 2018 Feb; 44(2):E15. PubMed ID: 29385915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.
    Kumar H; Ropper AE; Lee SH; Han I
    Mol Neurobiol; 2017 Jul; 54(5):3578-3590. PubMed ID: 27194298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury.
    Zhou Y; Zhang H; Zheng B; Ye L; Zhu S; Johnson NR; Wang Z; Wei X; Chen D; Cao G; Fu X; Li X; Xu HZ; Xiao J
    Int J Biol Sci; 2016; 12(1):87-99. PubMed ID: 26722220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats.
    Park CS; Lee JY; Seo KJ; Kim IY; Ju BG; Yune TY
    Mol Neurobiol; 2024 Feb; 61(2):662-677. PubMed ID: 37653221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The blood-spinal cord barrier: morphology and clinical implications.
    Bartanusz V; Jezova D; Alajajian B; Digicaylioglu M
    Ann Neurol; 2011 Aug; 70(2):194-206. PubMed ID: 21674586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury.
    Zhou Y; Zheng B; Ye L; Zhang H; Zhu S; Zheng X; Xia Q; He Z; Wang Q; Xiao J; Xu H
    Neurochem Res; 2016 Apr; 41(4):813-25. PubMed ID: 26582233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair.
    Sharma HS
    Curr Pharm Des; 2005; 11(11):1353-89. PubMed ID: 15853669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury.
    Lee JY; Choi HY; Ahn HJ; Ju BG; Yune TY
    Am J Pathol; 2014 Nov; 184(11):2985-3000. PubMed ID: 25325922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Porcine Model of Transvertebral Ultrasound and Microbubble-Mediated Blood-Spinal Cord Barrier Opening.
    Fletcher SP; Choi M; Ogrodnik N; O'Reilly MA
    Theranostics; 2020; 10(17):7758-7774. PubMed ID: 32685018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review.
    Jin LY; Li J; Wang KF; Xia WW; Zhu ZQ; Wang CR; Li XF; Liu HY
    J Neurotrauma; 2021 May; 38(9):1203-1224. PubMed ID: 33292072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.
    Lee JY; Choi HY; Yune TY
    Neuropharmacology; 2016 Oct; 109():78-87. PubMed ID: 27256500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium chloride contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by stimulating autophagic flux.
    Tong M; He Z; Lin X; Zhou Y; Wang Q; Zheng Z; Chen J; Xu H; Tian N
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2525-2531. PubMed ID: 29274777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water treadmill training protects the integrity of the blood-spinal cord barrier following SCI via the BDNF/TrkB-CREB signalling pathway.
    Ying X; Xie Q; Yu X; Li S; Wu Q; Chen X; Yue J; Zhou K; Tu W; Jiang S
    Neurochem Int; 2021 Feb; 143():104945. PubMed ID: 33359781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.