BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36971551)

  • 1. Thermodynamic and Kinetic Modeling Directs Pathway Optimization for Isopropanol Production in a Gas-Fermenting Bacterium.
    Lo J; Wu C; Humphreys JR; Yang B; Jiang Z; Wang X; Maness P; Tsesmetzis N; Xiong W
    mSystems; 2023 Apr; 8(2):e0127422. PubMed ID: 36971551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isopropanol production with engineered Cupriavidus necator as bioproduction platform.
    Grousseau E; Lu J; Gorret N; Guillouet SE; Sinskey AJ
    Appl Microbiol Biotechnol; 2014 May; 98(9):4277-90. PubMed ID: 24604499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute Proteome Quantification in the Gas-Fermenting Acetogen
    Valgepea K; Talbo G; Takemori N; Takemori A; Ludwig C; Mahamkali V; Mueller AP; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    mSystems; 2022 Apr; 7(2):e0002622. PubMed ID: 35384696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering Interventions for Sustainable 2,3-Butanediol Production in Gas-Fermenting
    Ghadermazi P; Re A; Ricci L; Chan SHJ
    mSystems; 2022 Apr; 7(2):e0111121. PubMed ID: 35323044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive Regulation of Formate Dehydrogenase during CO
    Zhang L; Liu Y; Zhao R; Zhang C; Jiang W; Gu Y
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of acetone to isopropanol using producer gas fermenting microbes.
    Ramachandriya KD; Wilkins MR; Delorme MJ; Zhu X; Kundiyana DK; Atiyeh HK; Huhnke RL
    Biotechnol Bioeng; 2011 Oct; 108(10):2330-8. PubMed ID: 21557204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Candida utilis for isopropanol production.
    Tamakawa H; Mita T; Yokoyama A; Ikushima S; Yoshida S
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6231-9. PubMed ID: 23674152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen.
    Arslan K; Schoch T; Höfele F; Herrschaft S; Oberlies C; Bengelsdorf F; Veiga MC; Dürre P; Kennes C
    Biotechnol J; 2022 May; 17(5):e2100515. PubMed ID: 35077002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.
    Kusakabe T; Tatsuke T; Tsuruno K; Hirokawa Y; Atsumi S; Liao JC; Hanai T
    Metab Eng; 2013 Nov; 20():101-8. PubMed ID: 24076145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO
    Lauer I; Philipps G; Jennewein S
    Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox controls metabolic robustness in the gas-fermenting acetogen
    Mahamkali V; Valgepea K; de Souza Pinto Lemgruber R; Plan M; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13168-13175. PubMed ID: 32471945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO
    Charubin K; Papoutsakis ET
    Metab Eng; 2019 Mar; 52():9-19. PubMed ID: 30391511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-isopropanol production in Corynebacterium glutamicum: Metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping.
    Ko YJ; Cha J; Jeong WY; Lee ME; Cho BH; Nisha B; Jeong HJ; Park SE; Han SO
    Bioresour Technol; 2022 Jun; 354():127171. PubMed ID: 35472638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.