BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36972153)

  • 1. Engineering Nutritionally Improved Edible Plant Oils.
    Zhou XR; Liu Q; Singh S
    Annu Rev Food Sci Technol; 2023 Mar; 14():247-269. PubMed ID: 36972153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic and Genome Editing Approaches for Modifying Plant Oils.
    Wayne LL; Gachotte DJ; Walsh TA
    Methods Mol Biol; 2019; 1864():367-394. PubMed ID: 30415347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Metabolic engineering of edible plant oils].
    Yue AQ; Sun XP; Li RZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):489-98. PubMed ID: 18349502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modification of plant oil composition via metabolic engineering--better nutrition by design.
    Haslam RP; Ruiz-Lopez N; Eastmond P; Moloney M; Sayanova O; Napier JA
    Plant Biotechnol J; 2013 Feb; 11(2):157-68. PubMed ID: 23066823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid profile of unconventional oilseeds.
    Sabikhi L; Sathish Kumar MH
    Adv Food Nutr Res; 2012; 67():141-84. PubMed ID: 23034116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.
    Ruiz-López N; Sayanova O; Napier JA; Haslam RP
    J Exp Bot; 2012 Apr; 63(7):2397-410. PubMed ID: 22291131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil crop genetic modification for producing added value lipids.
    Qi W; Lu H; Zhang Y; Cheng J; Huang B; Lu X; Sheteiwy MSA; Kuang S; Shao H
    Crit Rev Biotechnol; 2020 Sep; 40(6):777-786. PubMed ID: 32605455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa.
    Usher S; Han L; Haslam RP; Michaelson LV; Sturtevant D; Aziz M; Chapman KD; Sayanova O; Napier JA
    Sci Rep; 2017 Jul; 7(1):6570. PubMed ID: 28747792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux.
    Cahoon EB; Shockey JM; Dietrich CR; Gidda SK; Mullen RT; Dyer JM
    Curr Opin Plant Biol; 2007 Jun; 10(3):236-44. PubMed ID: 17434788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering plant seeds with fish oil-like levels of DHA.
    Petrie JR; Shrestha P; Zhou XR; Mansour MP; Liu Q; Belide S; Nichols PD; Singh SP
    PLoS One; 2012; 7(11):e49165. PubMed ID: 23145108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant based omega-3 fatty acids.
    Rani A; Panwar A; Sathe M; Chandrashekhara KA; Kush A
    Transgenic Res; 2018 Jun; 27(3):253-263. PubMed ID: 29752697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing plant seed oils for human nutrition.
    Damude HG; Kinney AJ
    Plant Physiol; 2008 Jul; 147(3):962-8. PubMed ID: 18612073
    [No Abstract]   [Full Text] [Related]  

  • 13. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.
    Bhunia RK; Chakraborty A; Kaur R; Gayatri T; Bhattacharyya J; Basu A; Maiti MK; Sen SK
    Plant Mol Biol; 2014 Nov; 86(4-5):351-65. PubMed ID: 25139230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA.
    Ruiz-Lopez N; Usher S; Sayanova OV; Napier JA; Haslam RP
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):143-54. PubMed ID: 25417743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.
    Ruiz-Lopez N; Haslam RP; Napier JA; Sayanova O
    Plant J; 2014 Jan; 77(2):198-208. PubMed ID: 24308505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of fatty acid biosynthesis in plants.
    Thelen JJ; Ohlrogge JB
    Metab Eng; 2002 Jan; 4(1):12-21. PubMed ID: 11800570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils.
    Msanne J; Kim H; Cahoon EB
    Biochimie; 2020 Nov; 178():4-14. PubMed ID: 32979430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids.
    Venegas-Calerón M; Sayanova O; Napier JA
    Prog Lipid Res; 2010 Apr; 49(2):108-19. PubMed ID: 19857520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of fatty acids for breeding of new oilseed crops: strategies, problems and first results.
    Drexler H; Spiekermann P; Meyer A; Domergue F; Zank T; Sperling P; Abbadi A; Heinz E
    J Plant Physiol; 2003 Jul; 160(7):779-802. PubMed ID: 12940546
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.