These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36972206)

  • 21. Efficacy of rehabilitation robot-assisted gait training on lower extremity dyskinesia in patients with Parkinson's disease: A systematic review and meta-analysis.
    Xue X; Yang X; Deng Z
    Ageing Res Rev; 2023 Mar; 85():101837. PubMed ID: 36634871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical effects of assisted robotic gait training in walking distance, speed, and functionality are maintained over the long term in individuals with cerebral palsy: a systematic review and meta-analysis.
    Volpini M; Aquino M; Holanda AC; Emygdio E; Polese J
    Disabil Rehabil; 2022 Sep; 44(19):5418-5428. PubMed ID: 34232847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury.
    Shin JC; Kim JY; Park HK; Kim NY
    Ann Rehabil Med; 2014 Dec; 38(6):719-25. PubMed ID: 25566469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Body Weight Support Training on Lower Extremity Motor Function in Patients With Spinal Cord Injury: A Systematic Review and Meta-analysis.
    Huang L; Huang HL; Dang XW; Wang YJ
    Am J Phys Med Rehabil; 2024 Feb; 103(2):149-157. PubMed ID: 37535636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait training using a wearable robotic hip device for incomplete spinal cord injury: A preliminary study.
    Yoshikawa K; Mutsuzaki H; Koseki K; Iwai K; Takeuchi R; Kohno Y
    J Spinal Cord Med; 2023 Nov; ():1-13. PubMed ID: 37934493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How robot-assisted gait training affects gait ability, balance and kinematic parameters after stroke: a systematic review and meta-analysis.
    Chen S; Zhang W; Wang D; Chen Z
    Eur J Phys Rehabil Med; 2024 Jun; 60(3):400-411. PubMed ID: 38647534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted gait training for balance and lower extremity function in patients with infratentorial stroke: a single-blinded randomized controlled trial.
    Kim HY; Shin JH; Yang SP; Shin MA; Lee SH
    J Neuroeng Rehabil; 2019 Jul; 16(1):99. PubMed ID: 31358017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Over-ground walking or robot-assisted gait training in people with .multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression.
    Sattelmayer M; Chevalley O; Steuri R; Hilfiker R
    BMC Neurol; 2019 May; 19(1):93. PubMed ID: 31068151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of robotic-assisted gait training on functional status, walking and quality of life in complete spinal cord injury.
    Çinar Ç; Yildirim MA; Öneş K; Gökşenoğlu G
    Int J Rehabil Res; 2021 Sep; 44(3):262-268. PubMed ID: 34356038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic review and network meta-analysis of robot-assisted gait training on lower limb function in patients with cerebral palsy.
    Wang Y; Zhang P; Li C
    Neurol Sci; 2023 Nov; 44(11):3863-3875. PubMed ID: 37495708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Body weight-supported gait training for patients with spinal cord injury: a network meta-analysis of randomised controlled trials.
    Yang FA; Chen SC; Chiu JF; Shih YC; Liou TH; Escorpizo R; Chen HC
    Sci Rep; 2022 Nov; 12(1):19262. PubMed ID: 36357483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor training using a robotic device in patients with subacute spinal cord injury.
    Schwartz I; Sajina A; Neeb M; Fisher I; Katz-Luerer M; Meiner Z
    Spinal Cord; 2011 Oct; 49(10):1062-7. PubMed ID: 21625239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robotic-Assisted Gait Training Effect on Function and Gait Speed in Subacute and Chronic Stroke Population: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
    Tedla JS; Dixit S; Gular K; Abohashrh M
    Eur Neurol; 2019; 81(3-4):103-111. PubMed ID: 31167193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta-band oscillations as a biomarker of gait recovery in spinal cord injury patients: A quantitative electroencephalography analysis.
    Simis M; Uygur-Kucukseymen E; Pacheco-Barrios K; Battistella LR; Fregni F
    Clin Neurophysiol; 2020 Aug; 131(8):1806-1814. PubMed ID: 32540720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.