These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36972397)

  • 1. Alcohol-induced tubulin post-translational modifications directly alter hepatic protein trafficking.
    Adhikari R; Mitra R; Bennett RG; McVicker BL; Tuma PL
    Hepatol Commun; 2023 Apr; 7(4):. PubMed ID: 36972397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol metabolism by alcohol dehydrogenase or cytochrome P
    Doody EE; Groebner JL; Walker JR; Frizol BM; Tuma DJ; Fernandez DJ; Tuma PL
    Am J Physiol Gastrointest Liver Physiol; 2017 Dec; 313(6):G558-G569. PubMed ID: 28864499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease.
    Groebner JL; Tuma PL
    Biomolecules; 2015 Sep; 5(3):2140-59. PubMed ID: 26393662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alcohol-induced microtubule acetylation leads to the accumulation of large, immobile lipid droplets.
    Groebner JL; Girón-Bravo MT; Rothberg ML; Adhikari R; Tuma DJ; Tuma PL
    Am J Physiol Gastrointest Liver Physiol; 2019 Oct; 317(4):G373-G386. PubMed ID: 31373507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function.
    Groebner JL; Fernandez DJ; Tuma DJ; Tuma PL
    Mol Cell Biochem; 2014 Dec; 397(1-2):223-33. PubMed ID: 25148871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules are more stable and more highly acetylated in ethanol-treated hepatic cells.
    Kannarkat GT; Tuma DJ; Tuma PL
    J Hepatol; 2006 May; 44(5):963-70. PubMed ID: 16169115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetaldehyde-modified and 4-hydroxynonenal-modified proteins in the livers of rats with alcoholic liver disease.
    Li CJ; Nanji AA; Siakotos AN; Lin RC
    Hepatology; 1997 Sep; 26(3):650-7. PubMed ID: 9303495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetaldehyde and microtubules.
    Tuma DJ; Smith SL; Sorrell MF
    Ann N Y Acad Sci; 1991; 625():786-92. PubMed ID: 2058934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule acetylation and stability may explain alcohol-induced alterations in hepatic protein trafficking.
    Joseph RA; Shepard BD; Kannarkat GT; Rutledge TM; Tuma DJ; Tuma PL
    Hepatology; 2008 May; 47(5):1745-53. PubMed ID: 18161881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alcohol consumption impairs hepatic protein trafficking: mechanisms and consequences.
    Shepard BD; Fernandez DJ; Tuma PL
    Genes Nutr; 2010 Jun; 5(2):129-40. PubMed ID: 19890673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
    Coombes C; Yamamoto A; McClellan M; Reid TA; Plooster M; Luxton GW; Alper J; Howard J; Gardner MK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7176-E7184. PubMed ID: 27803321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol-induced alterations in hepatic microtubule dynamics can be explained by impaired histone deacetylase 6 function.
    Shepard BD; Joseph RA; Kannarkat GT; Rutledge TM; Tuma DJ; Tuma PL
    Hepatology; 2008 Nov; 48(5):1671-9. PubMed ID: 18697214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaldehyde/protein interactions: are they involved in the pathogenesis of alcoholic liver disease?
    Worrall S; de Jersey J; Nicholls R; Wilce P
    Dig Dis; 1993; 11(4-5):265-77. PubMed ID: 8222307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking.
    Wu K; Wang L; Chen Y; Pirooznia M; Singh K; Wälde S; Kehlenbach RH; Scott I; Gucek M; Sack MN
    J Cell Sci; 2018 Nov; 131(22):. PubMed ID: 30333138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
    Howes SC; Alushin GM; Shida T; Nachury MV; Nogales E
    Mol Biol Cell; 2014 Jan; 25(2):257-66. PubMed ID: 24227885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic ethanol consumption impairs receptor-mediated endocytosis of MAA-modified albumin by liver endothelial cells.
    Duryee MJ; Klassen LW; Freeman TL; Willis MS; Tuma DJ; Thiele GM
    Biochem Pharmacol; 2003 Sep; 66(6):1045-54. PubMed ID: 12963492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Α-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion.
    Aguilar A; Becker L; Tedeschi T; Heller S; Iomini C; Nachury MV
    Mol Biol Cell; 2014 Jun; 25(12):1854-66. PubMed ID: 24743598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenesis of alcoholic liver disease: role of oxidative metabolism.
    Ceni E; Mello T; Galli A
    World J Gastroenterol; 2014 Dec; 20(47):17756-72. PubMed ID: 25548474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
    Kalebic N; Martinez C; Perlas E; Hublitz P; Bilbao-Cortes D; Fiedorczuk K; Andolfo A; Heppenstall PA
    Mol Cell Biol; 2013 Mar; 33(6):1114-23. PubMed ID: 23275437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substoichiometric inhibition of microtubule formation by acetaldehyde-tubulin adducts.
    Smith SL; Jennett RB; Sorrell MF; Tuma DJ
    Biochem Pharmacol; 1992 Jul; 44(1):65-72. PubMed ID: 1632840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.