These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36972569)

  • 1. Magnetron sputtering onto nonionic surfactant for 1-step preparation of metal nanoparticles without additional chemical reagents.
    Sergievskaya A; Alem H; Konstantinidis S
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36972569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sputtering onto liquids: how does the liquid viscosity affect the formation of nanoparticles and metal films?
    Sergievskaya A; Absil R; Chauvin A; Yusenko KV; Veselý J; Godfroid T; Konstantinidis S
    Phys Chem Chem Phys; 2023 Jan; 25(4):2803-2809. PubMed ID: 36412107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-sputtering of gold and copper onto liquids: a route towards the production of porous gold nanoparticles.
    Chauvin A; Sergievskaya A; El Mel AA; Fucikova A; Antunes Corrêa C; Vesely J; Duverger-Nédellec E; Cornil D; Cornil J; Tessier PY; Dopita M; Konstantinidis S
    Nanotechnology; 2020 Nov; 31(45):455303. PubMed ID: 32726767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sputtering onto liquids: a critical review.
    Sergievskaya A; Chauvin A; Konstantinidis S
    Beilstein J Nanotechnol; 2022; 13():10-53. PubMed ID: 35059275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix Sputtering Method: A Novel Physical Approach for Photoluminescent Noble Metal Nanoclusters.
    Ishida Y; Corpuz RD; Yonezawa T
    Acc Chem Res; 2017 Dec; 50(12):2986-2995. PubMed ID: 29190067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive sputtering onto an ionic liquid, a new synthesis route for bismuth-based nanoparticles.
    Ibrahim S; Ntomprougkidis V; Goutte M; Monier G; Traïkia M; Andanson JM; Bonnet P; Bousquet A
    Nanoscale; 2023 Mar; 15(11):5499-5509. PubMed ID: 36853235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Correlated Size and Composition of Pt/Au Alloy Nanoparticles via Magnetron Sputtering onto Liquid.
    Deng L; Nguyen MT; Shi J; Chau YR; Tokunaga T; Kudo M; Matsumura S; Hashimoto N; Yonezawa T
    Langmuir; 2020 Mar; 36(12):3004-3015. PubMed ID: 32150418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach.
    Sinha T; Ahmaruzzaman M
    J Colloid Interface Sci; 2015 Sep; 453():115-131. PubMed ID: 25978558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles.
    Kylián O; Shelemin A; Solař P; Pleskunov P; Nikitin D; Kuzminova A; Štefaníková R; Kúš P; Cieslar M; Hanuš J; Choukourov A; Biederman H
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31349580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple synthesis method for nano-metal catalyst supported on mesoporous carbon: the solution plasma process.
    Kang J; Li OL; Saito N
    Nanoscale; 2013 Aug; 5(15):6874-82. PubMed ID: 23783397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing.
    Johnson GE; Moser T; Engelhard M; Browning ND; Laskin J
    J Chem Phys; 2016 Nov; 145(17):174701. PubMed ID: 27825213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Different Surfactant Charges on the Formation of Gold Nanoparticles by the LASiS Method.
    Zulfajri M; Huang WJ; Huang GG; Chen HF
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes.
    Koji H; Kusumoto Y; Hatta A; Furuta H
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens.
    Velmurugan P; Iydroose M; Lee SM; Cho M; Park JH; Balachandar V; Oh BT
    Indian J Microbiol; 2014 Jun; 54(2):196-202. PubMed ID: 25320422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-free synthesis of copper nanoparticles and gas phase integration in CNT-composite materials.
    Brunet P; McGlynn RJ; Alessi B; Smail F; Boies A; Maguire P; Mariotti D
    Nanoscale Adv; 2021 Feb; 3(3):781-788. PubMed ID: 36133850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion.
    Damato TC; de Oliveira CC; Ando RA; Camargo PH
    Langmuir; 2013 Feb; 29(5):1642-9. PubMed ID: 23311597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Antibacterial Metal Surfaces Using Magnetron-Sputtering Method.
    Markowska-Szczupak A; Paszkiewicz O; Michalkiewicz B; Kamińska A; Wróbel RJ
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and optical properties of fluorescent gold nanoparticles obtained by matrix sputtering method with volatile mercaptan molecules in the vacuum chamber and consideration of their structures.
    Sumi T; Motono S; Ishida Y; Shirahata N; Yonezawa T
    Langmuir; 2015 Apr; 31(14):4323-9. PubMed ID: 25773272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids.
    Meischein M; Garzón-Manjón A; Hammerschmidt T; Xiao B; Zhang S; Abdellaoui L; Scheu C; Ludwig A
    Nanoscale Adv; 2022 Sep; 4(18):3855-3869. PubMed ID: 36133350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ X-ray scattering.
    Kousal J; Shelemin A; Schwartzkopf M; Polonskyi O; Hanuš J; Solař P; Vaidulych M; Nikitin D; Pleskunov P; Krtouš Z; Strunskus T; Faupel F; Roth SV; Biederman H; Choukourov A
    Nanoscale; 2018 Oct; 10(38):18275-18281. PubMed ID: 30246834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.