These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36972875)

  • 1. Predicting laterite redox potential with iron activity and electron transfer term.
    Ji Y; Xu J; Zhu L
    Chemosphere; 2023 Jul; 328():138519. PubMed ID: 36972875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Potentials of Magnetite Suspensions under Reducing Conditions.
    Robinson TC; Latta DE; Leddy J; Scherer MM
    Environ Sci Technol; 2022 Dec; 56(23):17454-17461. PubMed ID: 36394877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil.
    Yang X; Pan H; Shaheen SM; Wang H; Rinklebe J
    Environ Int; 2021 Nov; 156():106628. PubMed ID: 33991874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox potential model for guiding moderate oxidation of polycyclic aromatic hydrocarbons in soils.
    Ji Y; Xu J; Zhu L
    J Hazard Mater; 2024 Jun; 471():134443. PubMed ID: 38678701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques.
    Yang X; Shaheen SM; Wang J; Hou D; Ok YS; Wang SL; Wang H; Rinklebe J
    J Hazard Mater; 2022 Jan; 422():126808. PubMed ID: 34399221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization.
    Antić-Mladenović S; Frohne T; Kresović M; Stärk HJ; Tomić Z; Ličina V; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):141-150. PubMed ID: 27318758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release and mobilization of Ni, Co, and Cr under dynamic redox changes in a geogenic contaminated soil: Assessing the potential risk in serpentine paddy environments.
    Shaheen SM; Chen HY; Song H; Rinklebe J; Hseu ZY
    Sci Total Environ; 2022 Dec; 850():158087. PubMed ID: 35981572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.
    Shaheen SM; Frohne T; White JR; DeLaune RD; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):131-140. PubMed ID: 27240716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise redox changes alter the speciation and mobilization of phosphorus in hydromorphic soils.
    Shaheen SM; Wang J; Baumann K; Ahmed AA; Hsu LC; Liu YT; Wang SL; Kühn O; Leinweber P; Rinklebe J
    Chemosphere; 2022 Feb; 288(Pt 3):132652. PubMed ID: 34695481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk.
    Zhang S; Yang X; Hsu LC; Liu YT; Wang SL; White JR; Shaheen SM; Chen Q; Rinklebe J
    Sci Total Environ; 2021 Nov; 793():148531. PubMed ID: 34175597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium transformation driven by iron redox cycling in basalt-derived paddy soil with high geological background values.
    Zhang K; Yang Y; Chi W; Chen G; Du Y; Hu S; Li F; Liu T
    J Environ Sci (China); 2023 Mar; 125():470-479. PubMed ID: 36375930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Properties of Solid Phase Electron Acceptors Affect Anaerobic Microbial Respiration under Oxygen-Limited Conditions in Floodplain Soils.
    Aeppli M; Thompson A; Dewey C; Fendorf S
    Environ Sci Technol; 2022 Dec; 56(23):17462-17470. PubMed ID: 36342198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-induced mobilization of phosphorus in groundwater affected arable soil profiles.
    Shaheen SM; Wang J; Baumann K; Wang SL; Leinweber P; Rinklebe J
    Chemosphere; 2021 Jul; 275():129928. PubMed ID: 33640743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox chemistry of nickel in soils and sediments: A review.
    Rinklebe J; Shaheen SM
    Chemosphere; 2017 Jul; 179():265-278. PubMed ID: 28371710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil.
    Rinklebe J; Shaheen SM; Frohne T
    Chemosphere; 2016 Jan; 142():41-7. PubMed ID: 25900116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Organic Ligands on the Redox Properties of Fe(II) as Determined by Mediated Electrochemical Oxidation.
    Hudson JM; Luther GW; Chin YP
    Environ Sci Technol; 2022 Jun; 56(12):9123-9132. PubMed ID: 35675652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-off mobilization of contaminants in soils during redox oscillations.
    Couture RM; Charlet L; Markelova E; Madé B; Parsons CT
    Environ Sci Technol; 2015 Mar; 49(5):3015-23. PubMed ID: 25633742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.