These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36973314)

  • 1. Cross over to collective rearrangements near the dry-wet transition in two-dimensional foams.
    Yanagisawa N; Kurita R
    Sci Rep; 2023 Mar; 13(1):4939. PubMed ID: 36973314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam.
    Furuta Y; Oikawa N; Kurita R
    Sci Rep; 2016 Nov; 6():37506. PubMed ID: 27874060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical transition in a jammed state of a quasi-two-dimensional foam.
    Kurita R; Furuta Y; Yanagisawa N; Oikawa N
    Phys Rev E; 2017 Jun; 95(6-1):062613. PubMed ID: 28709314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size distribution dependence of collective relaxation dynamics in a two-dimensional wet foam.
    Yanagisawa N; Kurita R
    Sci Rep; 2021 Feb; 11(1):2786. PubMed ID: 33531566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarsening and mechanics in the bubble model for wet foams.
    Khakalo K; Baumgarten K; Tighe BP; Puisto A
    Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble rearrangement duration in foams near the jamming point.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev Lett; 2012 May; 108(18):188301. PubMed ID: 22681122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistics of shear-induced rearrangements in a two-dimensional model foam.
    Tewari S; Schiemann D; Durian DJ; Knobler CM; Langer SA; Liu AJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4385-96. PubMed ID: 11970293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarsening dynamics of three-dimensional levitated foams: From wet to dry.
    Isert N; Maret G; Aegerter CM
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):116. PubMed ID: 24136181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems.
    Svagan AJ; Benjamins JW; Al-Ansari Z; Shalom DB; Müllertz A; Wågberg L; Löbmann K
    J Control Release; 2016 Dec; 244(Pt A):74-82. PubMed ID: 27847327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.
    Tong M; Cole K; Brito-Parada PR; Neethling S; Cilliers JJ
    Langmuir; 2017 Apr; 33(15):3839-3846. PubMed ID: 28345923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hysteresis and avalanches in two-dimensional foam rheology simulations.
    Jiang Y; Swart PJ; Saxena A; Asipauskas M; Glazier JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5819-32. PubMed ID: 11969562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foam invasion through a single pore.
    Delbos A; Pitois O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011404. PubMed ID: 21867168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.
    Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and mechanism of liquid film collapse in a foam.
    Yanagisawa N; Tani M; Kurita R
    Soft Matter; 2021 Feb; 17(7):1738-1745. PubMed ID: 33594403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ observation of collective bubble collapse dynamics in a quasi-two-dimensional foam.
    Yanagisawa N; Kurita R
    Sci Rep; 2019 Mar; 9(1):5152. PubMed ID: 30914759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging.
    Duri A; Sessoms DA; Trappe V; Cipelletti L
    Phys Rev Lett; 2009 Feb; 102(8):085702. PubMed ID: 19257754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth laws and self-similar growth regimes of coarsening two-dimensional foams: transition from dry to wet limits.
    Fortuna I; Thomas GL; de Almeida RM; Graner F
    Phys Rev Lett; 2012 Jun; 108(24):248301. PubMed ID: 23004337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
    Carugo D; Ankrett DN; Zhao X; Zhang X; Hill M; O'Byrne V; Hoad J; Arif M; Wright DD; Lewis AL
    Phlebology; 2016 May; 31(4):283-95. PubMed ID: 26036246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.