These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36973588)

  • 1. The effect of light emission spectrum on biohydrogen production by Rhodopseudomonas palustris.
    Bosman CE; Pott RWM; Bradshaw SM
    Bioprocess Biosyst Eng; 2023 Jun; 46(6):913-919. PubMed ID: 36973588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of diurnal light cycles on biohydrogen production in a thermosiphon photobioreactor.
    Bosman CE; van Wyk P; Pott RWM; Bradshaw SM
    AMB Express; 2023 Mar; 13(1):26. PubMed ID: 36867285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Thermosiphon Photobioreactor for Photofermentative Hydrogen Production by
    Bosman CE; McClelland Pott RW; Bradshaw SM
    Bioengineering (Basel); 2022 Jul; 9(8):. PubMed ID: 35892758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling and testing of a light reflector system for the enhancement of biohydrogen production in a thermosiphon photobioreactor.
    Bosman CE; Pott RWM; Bradshaw SM
    J Biotechnol; 2023 Jan; 361():57-65. PubMed ID: 36462618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production.
    Wang Y; Tahir N; Cao W; Zhang Q; Lee DJ
    Bioresour Technol; 2019 Nov; 291():121806. PubMed ID: 31326683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.
    du Toit JP; Pott RWM
    Biotechnol Biofuels; 2020; 13():105. PubMed ID: 32536970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria.
    Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture.
    Zhu X; Xie X; Liao Q; Wang Y; Lee D
    Bioresour Technol; 2011 Sep; 102(18):8696-9. PubMed ID: 21411314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.
    Hu C; Choy SY; Giannis A
    Appl Biochem Biotechnol; 2018 May; 185(1):257-269. PubMed ID: 29127540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen.
    Pott RW; Howe CJ; Dennis JS
    Bioresour Technol; 2014; 152():464-70. PubMed ID: 24326037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.
    Adessi A; Concato M; Sanchini A; Rossi F; De Philippis R
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2917-26. PubMed ID: 26762392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.
    Pakpour F; Najafpour G; Tabatabaei M; Tohidfar M; Younesi H
    Bioprocess Biosyst Eng; 2014 May; 37(5):923-30. PubMed ID: 24078148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating and modeling the effect of light intensity on Rhodopseudomonas palustris growth.
    Ross BS; Pott RWM
    Biotechnol Bioeng; 2022 Mar; 119(3):907-921. PubMed ID: 34953072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor.
    Wang YZ; Liao Q; Zhu X; Tian X; Zhang C
    Bioresour Technol; 2010 Jun; 101(11):4034-41. PubMed ID: 20137910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological reformation of ethanol to hydrogen by Rhodopseudomonas palustris CGA009.
    Liu Y; Ghosh D; Hallenbeck PC
    Bioresour Technol; 2015 Jan; 176():189-95. PubMed ID: 25461002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.
    Muzziotti D; Adessi A; Faraloni C; Torzillo G; De Philippis R
    Microbiol Res; 2017 Apr; 197():49-55. PubMed ID: 28219525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of water lettuce (Pistia stratiotes) to biohydrogen by Rhodopseudomonas palustris.
    Corneli E; Adessi A; Olguín EJ; Ragaglini G; García-López DA; De Philippis R
    J Appl Microbiol; 2017 Dec; 123(6):1438-1446. PubMed ID: 28972701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities.
    Muzziotti D; Adessi A; Faraloni C; Torzillo G; De Philippis R
    Res Microbiol; 2016 Jun; 167(5):350-6. PubMed ID: 26916624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.