These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36973614)

  • 1. Utility of artificial intelligence to identify antihyperglycemic agents poisoning in the USA: introducing a practical web application using National Poison Data System (NPDS).
    Mehrpour O; Nakhaee S; Saeedi F; Valizade B; Lotfi E; Nawaz MH
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57801-57810. PubMed ID: 36973614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of decision tree with common machine learning models for prediction of biguanide and sulfonylurea poisoning in the United States: an analysis of the National Poison Data System.
    Mehrpour O; Saeedi F; Nakhaee S; Tavakkoli Khomeini F; Hadianfar A; Amirabadizadeh A; Hoyte C
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):60. PubMed ID: 37024869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of acute poisoning exposures with machine learning models derived from the National Poison Data System.
    Mehrpour O; Hoyte C; Delva-Clark H; Al Masud A; Biswas A; Schimmel J; Nakhaee S; Goss F
    Basic Clin Pharmacol Toxicol; 2022 Dec; 131(6):566-574. PubMed ID: 36181236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study.
    Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY
    J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning neural network derivation and testing to distinguish acute poisonings.
    Mehrpour O; Hoyte C; Al Masud A; Biswas A; Schimmel J; Nakhaee S; Nasr MS; Delva-Clark H; Goss F
    Expert Opin Drug Metab Toxicol; 2023; 19(6):367-380. PubMed ID: 37395108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outcome prediction of methadone poisoning in the United States: implications of machine learning in the National Poison Data System (NPDS).
    Mehrpour O; Saeedi F; Vohra V; Hoyte C
    Drug Chem Toxicol; 2024 Sep; 47(5):556-563. PubMed ID: 37941394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Mortality in COVID-19 Patients Using 6 Machine Learning Algorithms.
    Kourmpanis N; Liaskos J; Zoulias E; Mantas J
    Stud Health Technol Inform; 2023 Jun; 305():115-118. PubMed ID: 37386971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture.
    Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A
    BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking Precision Medicine for Prognosis of Chronic Kidney Disease Using Machine Learning.
    Dubey Y; Mange P; Barapatre Y; Sable B; Palsodkar P; Umate R
    Diagnostics (Basel); 2023 Oct; 13(19):. PubMed ID: 37835894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms.
    Ren Z; Hu Y; Xu L
    Respir Res; 2019 Oct; 20(1):220. PubMed ID: 31619240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of acute organophosphate poisoning severity using machine learning techniques.
    Hosseini SM; Rahimi M; Afrash MR; Ziaeefar P; Yousefzadeh P; Pashapour S; Evini PET; Mostafazadeh B; Shadnia S
    Toxicology; 2023 Mar; 486():153431. PubMed ID: 36682461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidiabetic medications in overdose: a comparison of the inquiries made to a regional poisons unit regarding original sulfonylureas, biguanides and insulin.
    von Mach MA; Gauer M; Meyer S; Omogbehin B; Schinzel H; Kann PH; Weilemann LS
    Int J Clin Pharmacol Ther; 2006 Feb; 44(2):51-6. PubMed ID: 16502763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and validation of injury risk classifiers for advanced automated crash notification systems.
    Kusano K; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S126-33. PubMed ID: 25307377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database.
    Hao N; Sun P; Zhao W; Li X
    Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning models for prediction of invasion Klebsiella pneumoniae liver abscess syndrome in diabetes mellitus: a singled centered retrospective study.
    Feng C; Di J; Jiang S; Li X; Hua F
    BMC Infect Dis; 2023 May; 23(1):284. PubMed ID: 37142976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection.
    Rodríguez M; Alesanco Á; Mehavilla L; García J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples.
    Abayomi-Alli OO; Damaševičius R; Maskeliūnas R; Misra S
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.