These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36973632)

  • 1. Diabetic Retinopathy Prediction Based on Wavelet Decomposition and Modified Capsule Network.
    Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Bennis A; Yahyaouy A; Chraibi F; Abdellaoui M; Andaloussi IB; Tairi H
    J Digit Imaging; 2023 Aug; 36(4):1739-1751. PubMed ID: 36973632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic retinopathy prediction based on vision transformer and modified capsule network.
    Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Yahyaouy A; Abdellaoui M; Andaloussi IB; Tairi H
    Comput Biol Med; 2024 Jun; 175():108523. PubMed ID: 38701591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Diagnosis of Diabetic Retinopathy from Fundus Images Using Neuro-Evolutionary Algorithms.
    Aquino-Brítez D; Gómez JA; Noguera JLV; García-Torres M; Román JCM; Gardel-Sotomayor PE; Benitez VEC; Matto IC; Pinto-Roa DP; Facon J; Grillo SA
    Stud Health Technol Inform; 2022 Jun; 290():689-693. PubMed ID: 35673105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy.
    Tariq H; Rashid M; Javed A; Zafar E; Alotaibi SS; Zia MYI
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease.
    Chaurasia BK; Raj H; Rathour SS; Singh PB
    Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized deep CNN for detection and classification of diabetic retinopathy and diabetic macular edema.
    Thanikachalam V; Kabilan K; Erramchetty SK
    BMC Med Imaging; 2024 Aug; 24(1):227. PubMed ID: 39198741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity.
    Vives-Boix V; Ruiz-Fernández D
    Comput Methods Programs Biomed; 2021 Jul; 206():106094. PubMed ID: 34010801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques.
    Farooq MS; Arooj A; Alroobaea R; Baqasah AM; Jabarulla MY; Singh D; Sardar R
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable Diabetic Retinopathy using EfficientNET
    Chetoui M; Akhloufi MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1966-1969. PubMed ID: 33018388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images.
    Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M
    Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of Diabetic Retinopathy with Ground Truth Segmentation Using Fundus Images and Neural Network Algorithm.
    Kshirsagar PR; Manoharan H; Meshram P; Alqahtani J; Naveed QN; Islam S; Abebe TG
    Comput Intell Neurosci; 2022; 2022():8356081. PubMed ID: 36211022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated unsupervised deep learning-based approach for diabetic retinopathy detection.
    Naz H; Nijhawan R; Ahuja NJ
    Med Biol Eng Comput; 2022 Dec; 60(12):3635-3654. PubMed ID: 36274090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network.
    Fatima ; Imran M; Ullah A; Arif M; Noor R
    Comput Biol Med; 2022 Jun; 145():105424. PubMed ID: 35349799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.