These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36973914)

  • 1. A Coordination Polymer of Vaska's Complex as a Heterogeneous Catalyst for the Reductive Formation of Enamines from Amides.
    Griffin SE; Domecus GP; Flores CE; Sikma RE; Benz L; Cohen SM
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202301611. PubMed ID: 36973914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Approaches for the Synthesis of Low-Valent Metal-Organic Frameworks from Multitopic Phosphine Linkers.
    Griffin SE; Domecus GP; Cohen SM
    J Vis Exp; 2023 May; (195):. PubMed ID: 37246880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalization of carbon nanotubes with Vaska's complex: a theoretical approach.
    Mercuri F; Sgamellotti A
    J Phys Chem B; 2006 Aug; 110(31):15291-4. PubMed ID: 16884247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Frameworks with Low-Valent Metal Nodes.
    Sikma RE; Balto KP; Figueroa JS; Cohen SM
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202206353. PubMed ID: 35735910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Frameworks with Zero and Low-Valent Metal Nodes Connected by Tetratopic Phosphine Ligands.
    Sikma RE; Cohen SM
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202115454. PubMed ID: 34989077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning dihydrogen activation in the chemical space surrounding Vaska's complex.
    Friederich P; Dos Passos Gomes G; De Bin R; Aspuru-Guzik A; Balcells D
    Chem Sci; 2020 May; 11(18):4584-4601. PubMed ID: 33224459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density Functional Theory Study on the
    Kaneko M; Nakashima S
    Inorg Chem; 2021 Sep; 60(17):12740-12752. PubMed ID: 34410705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction.
    Biallas P; Yamazaki K; Dixon DJ
    Org Lett; 2022 Mar; 24(10):2002-2007. PubMed ID: 35258311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet-Spengler Reaction.
    Gabriel P; Gregory AW; Dixon DJ
    Org Lett; 2019 Sep; 21(17):6658-6662. PubMed ID: 31397160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary amine synthesis
    Xie LG; Dixon DJ
    Chem Sci; 2017 Nov; 8(11):7492-7497. PubMed ID: 29163902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational solvatochromism in Vaska's complex adducts.
    Huber CJ; Anglin TC; Jones BH; Muthu N; Cramer CJ; Massari AM
    J Phys Chem A; 2012 Sep; 116(37):9279-86. PubMed ID: 22916961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective Ir(I)-catalyzed carbocyclization of 1,6-enynes by the chiral counterion strategy.
    Barbazanges M; Augé M; Moussa J; Amouri H; Aubert C; Desmarets C; Fensterbank L; Gandon V; Malacria M; Ollivier C
    Chemistry; 2011 Dec; 17(49):13789-94. PubMed ID: 22052592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deoxy-Arylation of Amides via a Tandem Hydrosilylation/Radical- Radical Coupling Sequence.
    Venditto NJ; Boerth JA
    Org Lett; 2024 May; 26(17):3617-3621. PubMed ID: 38651818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bifunctional MOF Catalyst Containing Metal-Phosphine and Lewis Acidic Active Sites.
    Prasad RRR; Dawson DM; Cox PA; Ashbrook SE; Wright PA; Clarke ML
    Chemistry; 2018 Oct; 24(57):15309-15318. PubMed ID: 29979815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules.
    Shao L; Hu X; Sikligar K; Baker GA; Atwood JL
    Acc Chem Res; 2021 Aug; 54(16):3191-3203. PubMed ID: 34329553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond.
    Wang Y; Huang Z; Liu G; Huang Z
    Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and catalytic activity of saturated and unsaturated N-heterocyclic carbene iridium(i) complexes.
    Chang YH; Fu CF; Liu YH; Peng SM; Chen JT; Liu ST
    Dalton Trans; 2009 Feb; (5):861-7. PubMed ID: 19156280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Organic Frameworks as Platforms for Catalytic Applications.
    Jiao L; Wang Y; Jiang HL; Xu Q
    Adv Mater; 2018 Sep; 30(37):e1703663. PubMed ID: 29178384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General α-Amino 1,3,4-Oxadiazole Synthesis via Late-Stage Reductive Functionalization of Tertiary Amides and Lactams*.
    Matheau-Raven D; Dixon DJ
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19725-19729. PubMed ID: 34191400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical cyclizations terminated by Ir-catalyzed hydrogen atom transfer.
    Gansäuer A; Otte M; Shi L
    J Am Chem Soc; 2011 Jan; 133(3):416-7. PubMed ID: 21155565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.