BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3697417)

  • 21. Mechanisms of resistance to organophosphorus insecticides in populations of the obliquebanded leafroller Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) from southern Ontario.
    Pree DJ; Whitty KJ; Bittner LA; Pogoda MK;
    Pest Manag Sci; 2003 Jan; 59(1):79-84. PubMed ID: 12558102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [High esterases as mechanism of resistance to organophosphate insecticides in Aedes aegypti strains].
    Bisset JA; Rodríguez MM; Molina D; Díaz C; Soca LA
    Rev Cubana Med Trop; 2001; 53(1):37-43. PubMed ID: 11826536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Main drug- and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues.
    Toussaint C; Albin N; Massaad L; Grunenwald D; Parise O; Morizet J; Gouyette A; Chabot GG
    Cancer Res; 1993 Oct; 53(19):4608-12. PubMed ID: 8402635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica.
    Wei SH; Clark AG; Syvanen M
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1145-53. PubMed ID: 11583927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonoxidative enzymes in the metabolism of insecticides.
    Ahmad S; Forgash AJ
    Ann Clin Biochem; 1976 May; 13(3):141-64. PubMed ID: 782333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. INSECTICIDE RESISTANCE IN THE GROUND SPIDER, Pardosa sumatrana (THORELL, 1890; ARANEAE: LYCOSIDAE).
    Tahir HM; Khizar F; Naseem S; Yaqoob R; Samiullah K
    Arch Insect Biochem Physiol; 2016 Sep; 93(1):55-64. PubMed ID: 27312591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sublethal effects of three pesticides on activities of selected target and detoxification enzymes in the aquatic midge, Chironomus tentans (diptera: chironomidae).
    Rakotondravelo ML; Anderson TD; Charlton RE; Zhu KY
    Arch Environ Contam Toxicol; 2006 Oct; 51(3):360-6. PubMed ID: 16865602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonoxidative enzymes in the metabolism of insecticides.
    Ahmad S; Forgash AJ
    Drug Metab Rev; 1976; 5(1):141-64. PubMed ID: 802086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of esterases and monooxygenase in the deltamethrin resistance in Anopheles stephensi Giles (1908), at Mysore.
    Ganesh KN; Vijayan VA; Urmila J; Gopalan N; Prakash S
    Indian J Exp Biol; 2002 May; 40(5):583-8. PubMed ID: 12622206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Esterase isoenzymes and insecticide resistance in Frankliniella occidentalis populations from the south-east region of Spain.
    López-Soler N; Cervera A; Moores GD; Martínez-Pardo R; Garcerá MD
    Pest Manag Sci; 2008 Dec; 64(12):1258-66. PubMed ID: 18688781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cancer chemotherapy and drug metabolism enzyme].
    Xu F; Zhen YS; Shao RG
    Sheng Li Ke Xue Jin Zhan; 2005 Oct; 36(4):295-8. PubMed ID: 16408765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abnormalities in the microsomal oxidases of the WHO standard reference strain of Musca domestica.
    Terriere LC; Schonbrod RD; Yu SJ
    Bull World Health Organ; 1975; 52(1):101-8. PubMed ID: 1082379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris.
    Zhu YC; Snodgrass GL; Chen MS
    Insect Biochem Mol Biol; 2004 Nov; 34(11):1175-86. PubMed ID: 15522613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand.
    Chareonviriyaphap T; Rongnoparut P; Chantarumporn P; Bangs MJ
    J Vector Ecol; 2003 Jun; 28(1):108-16. PubMed ID: 12831135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of mixed function oxidases in resistance.
    Plapp FW
    Environ Qual Saf Suppl; 1975; 3():421-4. PubMed ID: 773645
    [No Abstract]   [Full Text] [Related]  

  • 36. Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.).
    Reuveny H; Cohen E
    Arch Insect Biochem Physiol; 2004 Oct; 57(2):92-100. PubMed ID: 15378568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae).
    Kostaropoulos I; Papadopoulos AI; Metaxakis A; Boukouvala E; Papadopoulou-Mourkidou E
    Pest Manag Sci; 2001 Jun; 57(6):501-8. PubMed ID: 11407025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biologically active substances from medicinal plants as a factor of the organism detoxication].
    Dadali VA; Makarov VG
    Vopr Pitan; 2003; 72(5):49-55. PubMed ID: 14619618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical mechanisms of resistance to insecticides.
    Hodgson E; Motoyama N
    Ciba Found Symp; 1984; 102():167-89. PubMed ID: 6559114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of xenobiotic metabolizing enzymes in breast cancer.
    Murray GI; Weaver RJ; Paterson PJ; Ewen SW; Melvin WT; Burke MD
    J Pathol; 1993 Mar; 169(3):347-53. PubMed ID: 8492228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.