These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36974592)
1. Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. Lin HY; Chen WR; Lu LC; Chen HL; Chen YH; Pan M; Chen CC; Chen C; Yen TH; Wan D Small; 2023 Jul; 19(28):e2207404. PubMed ID: 36974592 [TBL] [Abstract][Full Text] [Related]
2. Green Textile Materials for Surface Enhanced Raman Spectroscopy Identification of Pesticides Using a Raman Handheld Spectrometer for In-Field Detection. Hermsen A; Schoettl J; Hertel F; Cerullo M; Schlueter A; Lehmann CW; Mayer C; Jaeger M Appl Spectrosc; 2022 Oct; 76(10):1222-1233. PubMed ID: 35412371 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
4. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L; Feng S; Hua MZ; Lu X Talanta; 2023 Mar; 254():124128. PubMed ID: 36462280 [TBL] [Abstract][Full Text] [Related]
5. Wafer-scale nanocracks enable single-molecule detection and on-site analysis. Chang YL; Lai IC; Lu LC; Chang SW; Sun AY; Wan D; Chen HL Biosens Bioelectron; 2022 Mar; 200():113920. PubMed ID: 34973566 [TBL] [Abstract][Full Text] [Related]
6. Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water. Yu H; Guo D; Zhang H; Jia X; Han L; Xiao W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121930. PubMed ID: 36191437 [TBL] [Abstract][Full Text] [Related]
7. Flexible, scalable and simple-fabricated silver nanorod-decorated bacterial nanocellulose SERS substrates cooperated with portable Raman spectrometer for on-site detection of pesticide residues. Zhang S; Xu J; He M; Sun Z; Li Y; Ding L; Wu L; Liu X; Du Z; Jiang S Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124300. PubMed ID: 38640626 [TBL] [Abstract][Full Text] [Related]
8. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Adhikari S; Joshi R; Joshi R; Kim M; Jang Y; Tufa LT; Gicha BB; Lee J; Lee D; Cho BK Food Chem; 2024 Nov; 457():140486. PubMed ID: 39032478 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic Slippery Surface-Based Surface-Enhanced Raman Spectroscopy Platform for Ultrasensitive Detection in Food Safety Applications. Zhang D; You H; Yuan L; Hao R; Li T; Fang J Anal Chem; 2019 Apr; 91(7):4687-4695. PubMed ID: 30810031 [TBL] [Abstract][Full Text] [Related]
10. The time-resolved D-SERS vibrational spectra of pesticide thiram. Li P; Liu H; Yang L; Liu J Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L; Yu Z; Lin M Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496 [TBL] [Abstract][Full Text] [Related]
13. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Zhu J; Liu MJ; Li JJ; Li X; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():586-593. PubMed ID: 28881284 [TBL] [Abstract][Full Text] [Related]
14. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Sinha SS; Jones S; Pramanik A; Ray PC Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003 [TBL] [Abstract][Full Text] [Related]
15. SERS-based pesticide detection by using nanofinger sensors. Kim A; Barcelo SJ; Li Z Nanotechnology; 2015 Jan; 26(1):015502. PubMed ID: 25490192 [TBL] [Abstract][Full Text] [Related]
16. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S; Raposo M; Nogueira HIS; Trindade T Talanta; 2018 May; 182():558-566. PubMed ID: 29501193 [TBL] [Abstract][Full Text] [Related]
17. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. Khlebtsov BN; Khanadeev VA; Panfilova EV; Bratashov DN; Khlebtsov NG ACS Appl Mater Interfaces; 2015 Apr; 7(12):6518-29. PubMed ID: 25764374 [TBL] [Abstract][Full Text] [Related]
18. SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Wang K; Yue Z; Fang X; Lin H; Wang L; Cao L; Sui J; Ju L Sci Total Environ; 2023 Jan; 856(Pt 2):159108. PubMed ID: 36191707 [TBL] [Abstract][Full Text] [Related]
19. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Zhang L; Jiang C; Zhang Z Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS. Zhai K; Sun L; Nguyen THD; Lin M J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]