These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 36975212)
1. Thia-Michael addition: the route to promising opportunities for fast and cysteine-specific modification. Ahangarpour M; Kavianinia I; Brimble MA Org Biomol Chem; 2023 Apr; 21(15):3057-3072. PubMed ID: 36975212 [TBL] [Abstract][Full Text] [Related]
6. On-Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool. Cameron AJ; Harris PWR; Brimble MA Angew Chem Int Ed Engl; 2020 Oct; 59(41):18054-18061. PubMed ID: 32700356 [TBL] [Abstract][Full Text] [Related]
7. Synthetic cysteine surrogates used in native chemical ligation. Wong CT; Tung CL; Li X Mol Biosyst; 2013 May; 9(5):826-33. PubMed ID: 23302767 [TBL] [Abstract][Full Text] [Related]
8. Aminoethylation in model peptides reveals conditions for maximizing thiol specificity. Hopkins CE; Hernandez G; Lee JP; Tolan DR Arch Biochem Biophys; 2005 Nov; 443(1-2):1-10. PubMed ID: 16229814 [TBL] [Abstract][Full Text] [Related]
9. Visible-Light-Induced Cysteine-Specific Bioconjugation: Biocompatible Thiol-Ene Click Chemistry. Choi H; Kim M; Jang J; Hong S Angew Chem Int Ed Engl; 2020 Dec; 59(50):22514-22522. PubMed ID: 32864829 [TBL] [Abstract][Full Text] [Related]
10. A Plug-and-Play Platform for the Formation of Trifunctional Cysteine Bioconjugates that also Offers Control over Thiol Cleavability. Bahou C; Szijj PA; Spears RJ; Wall A; Javaid F; Sattikar A; Love EA; Baker JR; Chudasama V Bioconjug Chem; 2021 Apr; 32(4):672-679. PubMed ID: 33710874 [TBL] [Abstract][Full Text] [Related]
11. Diverse functionalization of Aurora-A kinase at specified surface and buried sites by native chemical modification. Rowan F; Richards M; Widya M; Bayliss R; Blagg J PLoS One; 2014; 9(8):e103935. PubMed ID: 25093837 [TBL] [Abstract][Full Text] [Related]
12. Fast and Cysteine-Specific Modification of Peptides, Proteins and Bacteriophage Using Chlorooximes. Chen FJ; Zheng M; Nobile V; Gao J Chemistry; 2022 Apr; 28(20):e202200058. PubMed ID: 35167137 [TBL] [Abstract][Full Text] [Related]
13. Catch, Modify and Analyze: Methods of Chemoselective Modification of Cysteine-Containing Peptides. Kowalska M; Bąchor R Molecules; 2022 Feb; 27(5):. PubMed ID: 35268701 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chalker JM; Bernardes GJ; Lin YA; Davis BG Chem Asian J; 2009 May; 4(5):630-40. PubMed ID: 19235822 [TBL] [Abstract][Full Text] [Related]
15. A "tag-and-modify" approach to site-selective protein modification. Chalker JM; Bernardes GJ; Davis BG Acc Chem Res; 2011 Sep; 44(9):730-41. PubMed ID: 21563755 [TBL] [Abstract][Full Text] [Related]
16. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Huang F; Han X; Xiao X; Zhou J Molecules; 2022 Nov; 27(22):. PubMed ID: 36431829 [TBL] [Abstract][Full Text] [Related]
17. Global methods to monitor the thiol-disulfide state of proteins in vivo. Leichert LI; Jakob U Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668 [TBL] [Abstract][Full Text] [Related]
18. Selective chemical protein modification. Spicer CD; Davis BG Nat Commun; 2014 Sep; 5():4740. PubMed ID: 25190082 [TBL] [Abstract][Full Text] [Related]
19. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Zeng J; Davies MJ Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796 [TBL] [Abstract][Full Text] [Related]
20. Photocatalytic Modification of Amino Acids, Peptides, and Proteins. Bottecchia C; Noël T Chemistry; 2019 Jan; 25(1):26-42. PubMed ID: 30063101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]