These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 36975324)

  • 21. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair.
    Mei Q; Rao J; Bei HP; Liu Y; Zhao X
    Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent.
    Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K
    Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery.
    Salah M; Tayebi L; Moharamzadeh K; Naini FB
    Maxillofac Plast Reconstr Surg; 2020 Dec; 42(1):18. PubMed ID: 32548078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioprinting Technologies in Tissue Engineering.
    Yilmaz B; Tahmasebifar A; Baran ET
    Adv Biochem Eng Biotechnol; 2020; 171():279-319. PubMed ID: 31468094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.
    Abdelaziz AG; Nageh H; Abdo SM; Abdalla MS; Amer AA; Abdal-Hay A; Barhoum A
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering.
    Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M
    Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering.
    Lafuente-Merchan M; Ruiz-Alonso S; Espona-Noguera A; Galvez-Martin P; López-Ruiz E; Marchal JA; López-Donaire ML; Zabala A; Ciriza J; Saenz-Del-Burgo L; Pedraz JL
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112160. PubMed ID: 34082965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications.
    Rastin H; Mansouri N; Tung TT; Hassan K; Mazinani A; Ramezanpour M; Yap PL; Yu L; Vreugde S; Losic D
    Adv Healthc Mater; 2021 Nov; 10(22):e2101439. PubMed ID: 34468088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting.
    Panwar A; Tan LP
    Molecules; 2016 May; 21(6):. PubMed ID: 27231892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update.
    Khalaf AT; Wei Y; Wan J; Zhu J; Peng Y; Abdul Kadir SY; Zainol J; Oglah Z; Cheng L; Shi Z
    Life (Basel); 2022 Jun; 12(6):. PubMed ID: 35743934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review.
    Dzobo K; Motaung KSCM; Adesida A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges.
    Gaihre B; Potes MA; Serdiuk V; Tilton M; Liu X; Lu L
    Biomaterials; 2022 May; 284():121507. PubMed ID: 35421800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends.
    Ishack S; Lipner SR
    Dermatol Surg; 2020 Dec; 46(12):1500-1505. PubMed ID: 32205755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering.
    Zhang CY; Fu CP; Li XY; Lu XC; Hu LG; Kankala RK; Wang SB; Chen AZ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks.
    Rastin H; Zhang B; Mazinani A; Hassan K; Bi J; Tung TT; Losic D
    Nanoscale; 2020 Aug; 12(30):16069-16080. PubMed ID: 32579663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.