These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36975335)

  • 1. Gait Generation Method of Snake Robot Based on Main Characteristic Curve Fitting.
    Tang C; Sun L; Zhou G; Shu X; Tang H; Wu H
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Control of Hybrid 3-D Gaits of Snake-Like Robots.
    Cao Z; Zhang D; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4603-4612. PubMed ID: 33021941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe.
    Lu J; Tang C; Hu E; Li Z
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38507791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified Approach to the Motion Design for a Snake Robot Negotiating Complicated Pipe Structures.
    Inazawa M; Takemori T; Tanaka M; Matsuno F
    Front Robot AI; 2021; 8():629368. PubMed ID: 34012981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns.
    Kelasidi E; Liljebäck P; Pettersen KY; Gravdahl JT
    Robotics Biomim; 2015; 2():8. PubMed ID: 26705512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition.
    Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control and study of bio-inspired quadrupedal gaits on an underactuated miniature robot.
    Askari M; Ugur M; Mahkam N; Yeldan A; Ozcan O
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36608346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning.
    Zheng C; Li G; Hayashibe M
    Front Robot AI; 2022; 9():957931. PubMed ID: 36158602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera.
    Liu L; Guo X; Fang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional Locomotion of Soft Inchworm Crawler Using Dynamic Gaits.
    Du L; Ma S; Tokuda K; Tian Y; Li L
    Front Robot AI; 2022; 9():899850. PubMed ID: 35783025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM.
    Li D; Deng H; Pan Z; Xiu Y
    ISA Trans; 2022 Mar; 122():271-280. PubMed ID: 33992419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL.
    Mohammadi A; Gregg RD
    Proc ASME Dyn Syst Control Conf; 2018 Sep; 2018():. PubMed ID: 30906619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.