These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36975335)

  • 21. Realization of Crowded Pipes Climbing Locomotion of Snake Robot Using Hybrid Force-Position Control Method.
    Wang Y; Kamegawa T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design.
    Li C; Li M; Tao C
    Front Neurorobot; 2023; 17():1205775. PubMed ID: 37614967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study.
    Li G; Shintake J; Hayashibe M
    Front Robot AI; 2023; 10():1102854. PubMed ID: 36845333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous gait phase synchronization of human to a wheeled mobile robot with replicating gait-induced upper body oscillating motion.
    Yagi S; Nakata Y; Nakamura Y; Ishiguro H
    Sci Rep; 2022 Sep; 12(1):16275. PubMed ID: 36175591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance.
    Fu Q; Li C
    R Soc Open Sci; 2020 Feb; 7(2):191192. PubMed ID: 32257305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake.
    Wan Z; Sun Y; Qin Y; Skorina EH; Gasoto R; Luo M; Fu J; Onal CD
    Soft Robot; 2023 Apr; 10(2):258-268. PubMed ID: 35976088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Safe and Compliant Noncontact Interactive Approach for Wheeled Walking Aid Robot.
    Zhao D; Wang W; Okonkwo MC; Yang Z; Yang J; Liu H
    Comput Intell Neurosci; 2022; 2022():3033920. PubMed ID: 35341193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying slippage on pushing applications with snake robots.
    Reyes F; Ma S
    Robotics Biomim; 2017; 4(1):9. PubMed ID: 29152450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot.
    Chen Y; Grezmak JE; Graf NM; Daltorio KA
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Get a grip: inward dactyl motions improve efficiency of sideways-walking gait for an amphibious crab-like robot.
    Graf NM; Grezmak JE; Daltorio KA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35926481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized Design, Modeling and Control Methodology for a Snake-like Aerial Robot.
    Zhao M; Nishio T
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological Development at the Evolutionary Timescale: Robotic Developmental Evolution.
    Benureau FCY; Tani J
    Artif Life; 2022 Jun; 28(1):3-21. PubMed ID: 35287173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trajectory Planning on Rolling Locomotion of Spherical Movable Tensegrity Robots with Multi-Gait Patterns.
    Feng X; Xu J; Zhang J; Ohsaki M; Zhao Y; Luo Y; Chen Y; Xu X
    Soft Robot; 2024 Oct; 11(5):725-740. PubMed ID: 38634785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow.
    Sharifzadeh M; Jiang Y; Lafmejani AS; Nichols K; Aukes D
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34284354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.