These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36975361)

  • 1. Modeling and Analysis of a Reconfigurable Rover for Improved Traversing over Soft Sloped Terrains.
    Lyu S; Zhang W; Yao C; Zhu Z; Jia Z
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration-Based Recognition of Wheel-Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers.
    Lv F; Li N; Gao H; Ding L; Deng Z; Yu H; Liu Z
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
    Li Z; Wang Y
    ScientificWorldJournal; 2014; 2014():396382. PubMed ID: 25276849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Assistive Anchor-Like Grousers on Wheeled Rover Performance over Unconsolidated Sandy Dune Inclines.
    Ibrahim AN; Aoshima S; Shiroma N; Fukuoka Y
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Approach to Lunar Rover Global Path Planning Using Environmental Constraints and the Rover Internal Resource Status.
    Tanaka T; Malki H
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization.
    Kilic C; Ohi N; Gu Y; Gross JN
    IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mars 2020
    Bell JF; Maki JN; Mehall GL; Ravine MA; Caplinger MA; Bailey ZJ; Brylow S; Schaffner JA; Kinch KM; Madsen MB; Winhold A; Hayes AG; Corlies P; Tate C; Barrington M; Cisneros E; Jensen E; Paris K; Crawford K; Rojas C; Mehall L; Joseph J; Proton JB; Cluff N; Deen RG; Betts B; Cloutis E; Coates AJ; Colaprete A; Edgett KS; Ehlmann BL; Fagents S; Grotzinger JP; Hardgrove C; Herkenhoff KE; Horgan B; Jaumann R; Johnson JR; Lemmon M; Paar G; Caballo-Perucha M; Gupta S; Traxler C; Preusker F; Rice MS; Robinson MS; Schmitz N; Sullivan R; Wolff MJ
    Space Sci Rev; 2021; 217(1):24. PubMed ID: 33612866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traversability analysis with vision and terrain probing for safe legged robot navigation.
    Haddeler G; Chuah MYM; You Y; Chan J; Adiwahono AH; Yau WY; Chew CM
    Front Robot AI; 2022; 9():887910. PubMed ID: 36071857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-coupled control for all-terrain rovers.
    Reina G
    Sensors (Basel); 2013 Jan; 13(1):785-800. PubMed ID: 23299625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and dynamic analysis of jumping wheel-legged robot in complex terrain environment.
    Guo T; Liu J; Liang H; Zhang Y; Chen W; Xia X; Wang M; Wang Z
    Front Neurorobot; 2022; 16():1066714. PubMed ID: 36531915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro.
    De Luca A; Muratore L; Raghavan VS; Antonucci D; Tsagarakis NG
    Front Robot AI; 2021; 8():721001. PubMed ID: 34869611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified Chassis Control of Electric Vehicles Considering Wheel Vertical Vibrations.
    Chen X; Wang M; Wang W
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Lunar Rover Localization while Fully Scanning a Bounded Obstacle-Rich Workspace.
    Kim J
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, Simulation and Implementation of All Terrain Adaptive Five DOF Robot.
    Wang Z; Zhao J; Zeng G
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Impact of Lunar Rover Structure and Lunar Surface Characteristics on Antenna Performance.
    Gadhafi R; Serria E; AlMaeeni S; Mukhtar H; Abd-Alhameed R; Mansoor W
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material remodeling and unconventional gaits facilitate locomotion of a robophysical rover over granular terrain.
    Shrivastava S; Karsai A; Aydin YO; Pettinger R; Bluethmann W; Ambrose RO; Goldman DI
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed consensus control for a parallel six-wheel-legged robot on uneven terrain.
    Wang L; Lei T; Si J; Xu K; Wang X; Wang J; Wang S
    ISA Trans; 2022 Oct; 129(Pt A):628-641. PubMed ID: 35034782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal of a personal mobility vehicle capable of traversing rough terrain.
    Nakajima S
    Disabil Rehabil Assist Technol; 2014 May; 9(3):248-59. PubMed ID: 23919408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.