BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36975785)

  • 1. Convergent Within-Host Adaptation of Pseudomonas aeruginosa through the Transcriptional Regulatory Network.
    Gatt YE; Savion D; Bamberger T; Margalit H
    mSystems; 2023 Apr; 8(2):e0002423. PubMed ID: 36975785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection.
    Penaranda C; Chumbler NM; Hung DT
    PLoS Pathog; 2021 Apr; 17(4):e1009534. PubMed ID: 33901267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Loss and Acquisition in Lineages of Pseudomonas aeruginosa Evolving in Cystic Fibrosis Patient Airways.
    Gabrielaite M; Johansen HK; Molin S; Nielsen FC; Marvig RL
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections.
    Ferrara S; Rossi A; Ranucci S; De Fino I; Bragonzi A; Cigana C; Bertoni G
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.
    Marvig RL; Damkiær S; Khademi SM; Markussen TM; Molin S; Jelsbak L
    mBio; 2014 May; 5(3):e00966-14. PubMed ID: 24803516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional Profiling of Pseudomonas aeruginosa Infections.
    Thöming JG; Häussler S
    Adv Exp Med Biol; 2022; 1386():303-323. PubMed ID: 36258077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.
    Marvig RL; Sommer LM; Molin S; Johansen HK
    Nat Genet; 2015 Jan; 47(1):57-64. PubMed ID: 25401299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa.
    Khademi SMH; Sazinas P; Jelsbak L
    Genome Biol Evol; 2019 May; 11(5):1385-1397. PubMed ID: 30980662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome evolution drives transcriptomic and phenotypic adaptation in
    Wardell SJT; Gauthier J; Martin LW; Potvin M; Brockway B; Levesque RC; Lamont IL
    Microb Genom; 2021 Nov; 7(11):. PubMed ID: 34826267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Methyltransferase Regulates Nitric Oxide Homeostasis and Virulence in a Chronically Adapted Pseudomonas aeruginosa Strain.
    Han S; Liu J; Li M; Zhang Y; Duan X; Zhang Y; Chen H; Cai Z; Yang L; Liu Y
    mSystems; 2022 Oct; 7(5):e0043422. PubMed ID: 36106744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection.
    Bianconi I; Milani A; Cigana C; Paroni M; Levesque RC; Bertoni G; Bragonzi A
    PLoS Pathog; 2011 Feb; 7(2):e1001270. PubMed ID: 21304889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling of O Antigen in Mucoid Pseudomonas aeruginosa via Transcriptional Repression of
    Cross AR; Goldberg JB
    mBio; 2019 Feb; 10(1):. PubMed ID: 30782665
    [No Abstract]   [Full Text] [Related]  

  • 13. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.
    La Rosa R; Johansen HK; Molin S
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus.
    Cattoir V; Narasimhan G; Skurnik D; Aschard H; Roux D; Ramphal R; Jyot J; Lory S
    mBio; 2013 Jan; 3(6):e00410-12. PubMed ID: 23143799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways.
    Malone JG; Jaeger T; Manfredi P; Dötsch A; Blanka A; Bos R; Cornelis GR; Häussler S; Jenal U
    PLoS Pathog; 2012; 8(6):e1002760. PubMed ID: 22719254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in
    Kotecka K; Kawalek A; Kobylecki K; Bartosik AA
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921535
    [No Abstract]   [Full Text] [Related]  

  • 17. Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites.
    Bielecki P; Komor U; Bielecka A; Müsken M; Puchałka J; Pletz MW; Ballmann M; Martins dos Santos VA; Weiss S; Häussler S
    Environ Microbiol; 2013 Feb; 15(2):570-87. PubMed ID: 23145907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts.
    Rau MH; Hansen SK; Johansen HK; Thomsen LE; Workman CT; Nielsen KF; Jelsbak L; Høiby N; Yang L; Molin S
    Environ Microbiol; 2010 Jun; 12(6):1643-58. PubMed ID: 20406284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.
    Hogardt M; Heesemann J
    Curr Top Microbiol Immunol; 2013; 358():91-118. PubMed ID: 22311171
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Moradali MF; Ghods S; Rehm BH
    Front Cell Infect Microbiol; 2017; 7():39. PubMed ID: 28261568
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.