BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 36976093)

  • 1. Inflammation Responses to Bone Scaffolds under Mechanical Stimuli in Bone Regeneration.
    Wang J; Yuan B; Yin R; Zhang H
    J Funct Biomater; 2023 Mar; 14(3):. PubMed ID: 36976093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors.
    Charoenpanich A; Wall ME; Tucker CJ; Andrews DM; Lalush DS; Loboa EG
    Tissue Eng Part A; 2011 Nov; 17(21-22):2615-27. PubMed ID: 21767168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue.
    Ravichandran A; Lim J; Chong MSK; Wen F; Liu Y; Pillay YT; Chan JKY; Teoh SH
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2366-2375. PubMed ID: 27527120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.
    Maeda E; Nakagaki M; Ichikawa K; Nagayama K; Matsumoto T
    Bone Rep; 2017 Jun; 6():120-128. PubMed ID: 28435849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.
    Vetsch JR; Betts DC; Müller R; Hofmann S
    PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering.
    Hao Z; Xu Z; Wang X; Wang Y; Li H; Chen T; Hu Y; Chen R; Huang K; Chen C; Li J
    Front Cell Dev Biol; 2021; 9():790050. PubMed ID: 34858997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stimulation improves osteogenesis and the mechanical properties of osteoblast-laden RGD-functionalized polycaprolactone/hydroxyapatite scaffolds.
    Salifu AA; Obayemi JD; Uzonwanne VO; Soboyejo WO
    J Biomed Mater Res A; 2020 Dec; 108(12):2421-2434. PubMed ID: 32362069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis.
    Liu X; Zhao N; Liang H; Tan B; Huang F; Hu H; Chen Y; Wang G; Ling Z; Liu C; Miao Y; Wang Y; Zou X
    J Orthop Translat; 2022 Nov; 37():152-162. PubMed ID: 36380884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration.
    Zhang P; Liu X; Guo P; Li X; He Z; Li Z; Stoddart MJ; Grad S; Tian W; Chen D; Zou X; Zhou Z; Liu S
    Bioact Mater; 2021 Oct; 6(10):3097-3108. PubMed ID: 33778191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application.
    Shibli JA; Nagay BE; Suárez LJ; Urdániga Hung C; Bertolini M; Barão VAR; Souza JGS
    Tissue Eng Part C Methods; 2022 May; 28(5):179-192. PubMed ID: 35166162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering.
    Thompson MS; Epari DR; Bieler F; Duda GN
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1533-41. PubMed ID: 21287836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large defect-tailored composite scaffolds for in vivo bone regeneration.
    Ronca A; Guarino V; Raucci MG; Salamanna F; Martini L; Zeppetelli S; Fini M; Kon E; Filardo G; Marcacci M; Ambrosio L
    J Biomater Appl; 2014 Nov; 29(5):715-27. PubMed ID: 24951457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two- and three-dimensional piezoelectric scaffolds for bone tissue engineering.
    Silva CA; Fernandes MM; Ribeiro C; Lanceros-Mendez S
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112708. PubMed ID: 35985127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.
    Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL
    Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ossifying bone marrow explant culture as a three-dimensional mechanoresponsive in vitro model of osteogenesis.
    Gurkan UA; Krueger A; Akkus O
    Tissue Eng Part A; 2011 Feb; 17(3-4):417-28. PubMed ID: 20807016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses.
    Patel KD; Kim TH; Mandakhbayar N; Singh RK; Jang JH; Lee JH; Kim HW
    Acta Biomater; 2020 May; 108():97-110. PubMed ID: 32165193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.