These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36976114)

  • 1. Environment-Aware Rendering and Interaction in Web-Based Augmented Reality.
    Ferrão J; Dias P; Santos BS; Oliveira M
    J Imaging; 2023 Mar; 9(3):. PubMed ID: 36976114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Range Augmented Reality with Dynamic Occlusion Rendering.
    Sizintsev M; Mithun NC; Chiu HP; Samarasekera S; Kumar R
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4236-4244. PubMed ID: 34449369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Resolution 3D Rendering for High-Performance Web AR.
    Boutsi AM; Ioannidis C; Verykokou S
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physically-inspired Deep Light Estimation from a Homogeneous-Material Object for Mixed Reality Lighting.
    Park J; Park H; Yoon SE; Woo W
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):2002-2011. PubMed ID: 32070961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online tools to easily build virtual molecular models for display in augmented and virtual reality on the web.
    Cortés Rodríguez F; Dal Peraro M; Abriata LA
    J Mol Graph Model; 2022 Jul; 114():108164. PubMed ID: 35325844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LivePhantom: Retrieving Virtual World Light Data to Real Environments.
    Kolivand H; Billinghurst M; Sunar MS
    PLoS One; 2016; 11(12):e0166424. PubMed ID: 27930663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Real-time Method for Inserting Virtual Objects into Neural Radiance Fields.
    Ye K; Wu H; Tong X; Zhou K
    IEEE Trans Vis Comput Graph; 2024 Jul; PP():. PubMed ID: 38959139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.
    Rohmer K; Jendersie J; Grosch T
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2474-2484. PubMed ID: 28809689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing the Next Generation of Augmented Reality Games for Pediatric Healthcare: An Open-Source Collaborative Framework Based on ARCore for Implementing Teaching, Training and Monitoring Applications.
    Vidal-Balea A; Blanco-Novoa Ó; Fraga-Lamas P; Fernández-Caramés TM
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR360: Mixed Reality Rendering for 360° Panoramic Videos.
    Rhee T; Petikam L; Allen B; Chalmers A
    IEEE Trans Vis Comput Graph; 2017 Apr; 23(4):1379-1388. PubMed ID: 28129172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Lighting Estimation for Augmented Reality via Differentiable Screen-Space Rendering.
    Liu C; Wang L; Li Z; Quan S; Xu Y
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):2132-2145. PubMed ID: 35015644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shedding Light on Cast Shadows: An Investigation of Perceived Ground Contact in AR and VR.
    Adams H; Stefanucci J; Creem-Regehr S; Pointon G; Thompson W; Bodenheimer B
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4624-4639. PubMed ID: 34280102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic real-time outdoor rendering in augmented reality.
    Kolivand H; Sunar MS
    PLoS One; 2014; 9(9):e108334. PubMed ID: 25268480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Desktop vs. Mobile Interaction for the Creation of Pervasive Augmented Reality Experiences.
    Madeira T; Marques B; Neves P; Dias P; Santos BS
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occlusion Handling in Augmented Reality: Past, Present and Future.
    Macedo MCF; Apolinario AL
    IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1590-1609. PubMed ID: 34613916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Context-Aware Method for Authentically Simulating Outdoors Shadows for Mobile Augmented Reality.
    Barreira J; Bessa M; Barbosa L; Magalhaes L
    IEEE Trans Vis Comput Graph; 2018 Mar; 24(3):1223-1231. PubMed ID: 28278470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns.
    Syed TA; Siddiqui MS; Abdullah HB; Jan S; Namoun A; Alzahrani A; Nadeem A; Alkhodre AB
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affine-representation- based Calibrationfree Augmented Reality Using Image-based Rendering.
    Zheng C; Ma L
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6851-4. PubMed ID: 17281848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.