BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3697612)

  • 1. The potential accuracy of dual-energy computed tomography for the determination of hepatic iron.
    Sephton RG
    Br J Radiol; 1986 Apr; 59(700):351-3. PubMed ID: 3697612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Energy CT for Patients Suspected of Having Liver Iron Overload: Can Virtual Iron Content Imaging Accurately Quantify Liver Iron Content?
    Luo XF; Xie XQ; Cheng S; Yang Y; Yan J; Zhang H; Chai WM; Schmidt B; Yan FH
    Radiology; 2015 Oct; 277(1):95-103. PubMed ID: 25880263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed tomography for determining liver iron content in primary haemochromatosis.
    Chapman RW; Williams G; Bydder G; Dick R; Sherlock S; Kreel L
    Br Med J; 1980 Feb; 280(6212):440-2. PubMed ID: 7370525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ measurement of iron overload in liver tissue by dual-energy methods.
    Oelckers S; Graeff W
    Phys Med Biol; 1996 Jul; 41(7):1149-65. PubMed ID: 8822782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications.
    Landry G; Parodi K; Wildberger JE; Verhaegen F
    Phys Med Biol; 2013 Aug; 58(15):5029-48. PubMed ID: 23831541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of iron in cardiac and liver tissues by plasma emission spectroscopy.
    Collins W; Taylor WH
    Ann Clin Biochem; 1987 Sep; 24 ( Pt 5)():483-7. PubMed ID: 3662398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical aspects.
    van Kuijk C; Grashuis JL; Steenbeek JC; Schütte HE; Trouerbach WT
    Invest Radiol; 1990 Aug; 25(8):882-9. PubMed ID: 2394570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive liver-iron quantification by computed tomography in iron-overloaded rats.
    Nielsen P; Engelhardt R; Fischer R; Heinrich HC; Langkowski JH; Bücheler E
    Invest Radiol; 1992 Apr; 27(4):312-7. PubMed ID: 1601623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Material selective imaging and density measurement with the dual energy method. III. Determination of bone mineral of the spine with CT].
    Kalender W; Felsenberg D; Süss C
    Digitale Bilddiagn; 1987 Dec; 7(4):170-6. PubMed ID: 3436119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic iron overload: quantitative MR imaging.
    Gomori JM; Horev G; Tamary H; Zandback J; Kornreich L; Zaizov R; Freud E; Krief O; Ben-Meir J; Rotem H
    Radiology; 1991 May; 179(2):367-9. PubMed ID: 2014276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion range estimation by using dual energy computed tomography.
    Hünemohr N; Krauss B; Dinkel J; Gillmann C; Ackermann B; Jäkel O; Greilich S
    Z Med Phys; 2013 Dec; 23(4):300-13. PubMed ID: 23597413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative computerized tomographic determination of bone mineral content].
    Felsenberg D; Kalender WA; Banzer D; Schmilinsky G; Heyse M; Fischer E; Schneider U
    Rofo; 1988 Apr; 148(4):431-6. PubMed ID: 2834792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron, copper, zinc and selenium in human liver tissue measured by X-ray fluorescence spectrometry.
    Milman N; Laursen J; Pødenphant J; Staun-Olsen P
    Scand J Clin Lab Invest; 1983 Dec; 43(8):691-7. PubMed ID: 6665517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new calibration phantom for quantitative computed tomography.
    Kalender WA; Suess C
    Med Phys; 1987; 14(5):863-6. PubMed ID: 3683317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of two C.T. scanners for dual energy applications.
    Sephton RG
    Australas Phys Eng Sci Med; 1985; 8(1):11-6. PubMed ID: 4026712
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative computed tomography: comparative study using different scanners with two calibration phantoms.
    Suzuki S; Yamamuro T; Okumura H; Yamamoto I
    Br J Radiol; 1991 Nov; 64(767):1001-6. PubMed ID: 1742578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear resonant scattering of gamma rays--a new technique for in vivo measurement of body iron stores.
    Vartsky D; Ellis KJ; Hull DM; Cohn SH
    Phys Med Biol; 1979 Jul; 24(4):689-701. PubMed ID: 472006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual energy CT estimation of liver iron content in thalassaemic children.
    Leighton DM; de Campo JF; Matthews R; Sephton RG
    Australas Radiol; 1988 May; 32(2):214-9. PubMed ID: 3190608
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.